

Windows, Visual Studio, ASP.NET,
Azure, TFS & other Microsoft products
& technologies are trademarks of
the Microsoft group of companies.
‘DNC Magazine’ is an independent
publication and is not affiliated with,
nor has it been authorized, sponsored,
or otherwise approved by Microsoft
Corporation. Microsoft is a registered
trademark of Microsoft corporation
in the United States and/or other
countries.

Editor In Chief :
Suprotim Agarwal
(suprotimagarwal@
dotnetcurry.com)

Art Director :
Minal Agarwal

Contributing Authors :
Yacoub Massad
Gouri Sohoni
Darren Gillis
Daniel Jimenez Garcia
Damir Arh
Benjamin Jakobus

Technical Reviewers :
Damir Arh
Daniel Jimenez Garcia
Gouri Sohoni
Subodh Sohoni
Suprotim Agarwal
Yacoub Massad

Next Edition :
April 2021

Developers! Developers! Developers! A decade ago, bathed in sweat,
yelled the one and only Steve Balmer as if he was addressing a sect
that's unlike any other.

But why am I bringing this up now?

In the Software ecosystem, change has always been disruptive and has
occured more frequently than ever.

Organizations have had the best of intentions while adapting to these
frequent changes and have often pondered seriously accelerating their
digital transformation journey. The actual transformation though has
been quite slow due to restraints like time and budget.

That is, until now.

The pandemic that began in 2020 forced companies to reformulate
their plans and pivot by setting up remote working environments. Years’
worth of digital transformation, happened in just a matter of months!
And at the center of this were the Developers and IT staff, playing
a crucial role in this transformation. Sitting in remote locations, and
dealing with unprecedented challenges, developers have been working
asynchronously to skill, reskill and upskill themselves, and make their
organizations more agile.

Nobody knows for sure what 2021 and the coming years has in store
for us. I sincerelly hope it's good for everyone. The most important
thing to remember is that adapting to trends and circumstances is
what has helped our ancestors survive, and ultimately, this applies to
the software industry too. Companies that can fast-track their digital
transformation and enable creative thinking, co-creation with services,
tools (low-code) and technologies, to pivot as the situation demands,
will thrive.

..and Developers, Developers and Developers will be at the helm of this
journey. So yes Steve, we are a sect that's unlike any other!

EDITOR’S NOTE
@suprotimagarwal

Editor in Chief

Copyright @A2Z Knowledge Visuals Pvt. Ltd.
Reproductions in whole or part prohibited except by written permission. Email requests to “suprotimagarwal@
dotnetcurry.com”. The information in this magazine has been reviewed for accuracy at the time of its publication,
however the information is distributed without any warranty expressed or implied.

06
Real Time Apps with Blazor
WebAssembly and SignalR

Architecture of Cloud Applications

CONTENTS

Tic Tac Toe in F# - Part 2

Diving into Azure Data Studio

Best Practices for Nullable reference
types in C#

What is Machine Learning?

Continuous Deployment for Serverless
Applications using Azure

20

50

68

78

90

100

http://www.dotnetcurry.net/2021/dnc-effaccubcode-mag-jan2021

https://www.dotnetcurry.com/csharpbook/
http://www.dotnetcurry.net/2021/dnc-effaccubcode-mag-jan2021

6 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

CLOUD ARCHITECTURE

Damir Arh

ARCHITECTURE
OF
CLOUD
APPLICATIONS

In this article, I look at the definition of cloud applications and describe several design patterns
that are especially useful in such applications.

There’s no unanimous opinion on what cloud applications really are. For the purpose of this article, I’m
going to use the term to describe applications which are developed with the intention to be hosted on the

cloud. Although often, another term is used to name such applications: cloud-native applications.

7

 www.dotnetcurry.com/magazine |

Cloud-native applications
The official definition of cloud-native applications comes from the Cloud Native Computing Foundation
(CNCF):

Cloud native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as public,

private, and hybrid clouds. Containers, service meshes, microservices,
immutable infrastructure, and declarative APIs exemplify this

approach.

These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation,

they allow engineers to make high-impact changes frequently and
predictably with minimal toil.

It’s important to notice that the definition not only describes the internal architecture of cloud-native
applications (microservices, declarative APIs), but also the way these applications are deployed (containers,
service meshes, immutable infrastructure) and maintained (robust automation, frequent high-impact
changes).

In this tutorial, I’m going to focus on the internal application architecture of Cloud-Native Applications.

For a more high-level overview of microservices and their deployment, you can read the Microservices
Architecture Pattern article by Subodh Sohoni.

The architecture of cloud-native applications or microservices has many similarities to the Architecture
of Web Applications which I wrote about in my previous article from this series: Architecture of Web
Applications.

There are two main differences:

• The web applications as described in my previous article have their own user interface. The interface of
cloud native-applications are predominantly APIs (typically REST based).

• Cloud-applications are implemented as a collection of services; each one of them running as a
separate process and usually also in its own isolated environment. In contrast to that, monolithic web
applications run as a single process (unless multiple instances are deployed for the purpose of load
balancing).

The scope and size of these individual services varies across projects, but it is not uncommon for them to
be as small as possible, limited to a well-defined bounded subset of the full application functionality. That’s
why the term microservices is often used for them.

The internal architecture of a single microservice is very similar to the internal architecture of a monolithic
web application. They both include all parts of a typical multilayered application:

http://www.dotnetcurry.com/magazine/
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://www.cncf.io/
https://www.cncf.io/
https://dncmagazine.blob.core.windows.net/edition48/DNCMag-Issue48.pdf#page=06
https://dncmagazine.blob.core.windows.net/edition48/DNCMag-Issue48.pdf#page=06
https://www.dotnetcurry.com/author/subodh-sohoni
http://www.dotnetcurry.com/patterns-practices/web-application-architecture
http://www.dotnetcurry.com/patterns-practices/web-application-architecture
http://www.dotnetcurry.com/patterns-practices/web-application-architecture

8 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

• Presentation layer (web page or API)

• Business logic layer

• Data access layer

Figure 1: Layers in monolithic and microservices architecture

It’s important that each microservice has not only its own data access code but also its own separate data
storage (relational database or other). This not only allows it complete control over the data but also
increases the need for communication between individual microservices.

From an architectural point of view, these properties are more important than the size of the microservice
itself. That’s why I’ll simply use the term service for the rest of the article.

Communication between services
When one service needs access to data that’s in the domain of another service, it can’t simply read it from
the common data store (because there is none), nor does it have direct access to the data store of another
service. The only way to get to that data is through communication between the two services.

Synchronous communication

The most intuitive way for two services to communicate is most likely the request-response pattern. In this
case, the communication between the services consists of two messages:

• The request sent by the calling service to the called service.

• The response sent back by the called service to the calling service.

The interaction is fully synchronous: the calling service waits for a response from the called service before
it can continue its processing.

https://en.wikipedia.org/wiki/Request%E2%80%93response

9

 www.dotnetcurry.com/magazine |

Figure 2: Request response pattern

The most common implementation of the request-response pattern is the HTTP protocol: the client (usually
the browser) sends a request to the server (usually the web server) and waits for the response before it can
render it.

RESTful services use the same protocol: the client (usually an application) sends an HTTP request to the
server (usually a web service). When services expose their functionality as a (RESTful) API they can also
use the same approach for communicating between each other: one service acts as the client and another
service acts as the server.

In the .NET ecosystem, the recommended stack for implementing RESTful services is ASP.NET Core Web API.

The framework is very similar to ASP.NET Core MVC (and not just by its name). Individual endpoints are
implemented as action methods in controllers which group multiple action methods with the same base
URL (and usually also related functionality):

[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase
{
 private static readonly string[] Summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild", "Warm", "Balmy", "Hot",
 "Sweltering", "Scorching"
 };

 [HttpGet]
 public IEnumerable<WeatherForecast> Get()
 {
 var rng = new Random();
 return Enumerable.Range(1, 5).Select(index => new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = rng.Next(-20, 55),
 Summary = Summaries[rng.Next(Summaries.Length)]
 })

http://www.dotnetcurry.com/magazine/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://docs.microsoft.com/en-us/aspnet/core/web-api/

10 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

 .ToArray();
 }
}

The main difference is that there is no view in RESTful services. The response is a DTO (data transfer
object) that’s automatically serialized as JSON (JavaScript Object Notation), and deserialized back again on
the client. If needed, the serialization and deserialization process can be customized through serialization
options.

The available endpoints and the structure of requests and responses for each one of them can be described
using the OpenAPI specification. Swashbuckle is the most common library that’s used with ASP.NET Core
Web API to generate OpenAPI descriptions of RESTful APIs.

When implementing the ASP.NET Core Web API action methods, the same patterns can be used as for
ASP.NET Core MVC applications: Dependency Injection, Repository, Unit of work, etc.

I described them in more detail in my previous article from the series: Architecture of Web Applications.
When calling the RESTful APIs from another service, the same remote proxy pattern can be used as
described in another article from this series: Architecting .NET Desktop and Mobile applications. Other
useful patterns Retry and Circuit breaker are covered later in this article.

Although RESTful services are the most common API implementation today, they are not the only way to
implement an API using the request response pattern.

The predecessor of RESTful services is SOAP web services. They were different from RESTful services in
many ways:

• They used XML as the serialization format instead of JSON.

• They used the RPC (remote procedure call) model instead of a resource-based model.

• The protocol was much more complicated, with many extensions.

In .NET Core, there’s no framework or library available for implementing SOAP services. In .NET framework,
WCF (Windows Communication Foundation) was used for that purpose but it wasn’t fully ported to .NET
Core (nor are there any plans for that).

There’s only a limited client for SOAP services available which doesn’t support all the protocols.
For implementing the services, the only option is Core WCF – a far from complete open-source WCF
implementation for .NET Core.

The main disadvantages of SOAP were large messages and incomplete support for all extensions on
different development platforms which made cross-platform compatibility difficult. It doesn’t make much
sense to develop new SOAP services today.

A better alternative for RPC-based APIs is gRPC which doesn’t have either of the above-mentioned
disadvantages of SOAP services:

• Messages are serialized using protocol buffers which allow small binary messages.

• The protocol has wide support across many development platforms.

https://en.wikipedia.org/wiki/OpenAPI_Specification
https://docs.microsoft.com/en-us/aspnet/core/tutorials/getting-started-with-swashbuckle
http://www.dotnetcurry.com/patterns-practices/web-application-architecture
https://www.dotnetcurry.com/patterns-practices/desktop-mobile-application-architecture
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://github.com/CoreWCF/CoreWCF
https://grpc.io/
https://developers.google.com/protocol-buffers
https://grpc.io/docs/languages/

11

 www.dotnetcurry.com/magazine |

.NET Core provides full support for gRPC services and clients. The service interface and messages are
described using a protocol buffers’ .proto file:

syntax = "proto3";

option csharp_namespace = "GrpcService";

package greet;

service Greeter {
 rpc SayHello (HelloRequest) returns (HelloReply);
}

message HelloRequest {
 string name = 1;
}

message HelloReply {
 string message = 1;
}

The file is used as an input to autogenerate a base class for the service implementation. The service class
derives from that class and implements the service methods:

public class GreeterService : Greeter.GreeterBase
{
 public override Task<HelloReply> SayHello(HelloRequest request, ServerCallContext
context)
 {
 return Task.FromResult(new HelloReply
 {
 Message = "Hello " + request.Name
 });
 }
}

For the client, the Grpc.Net.Client, Google.Protobuf, and Grpc.Tools NuGet packages must be installed in the
project. The latter will autogenerate a remote proxy from the service .proto file which can then be used
from the application code:

var channel = GrpcChannel.ForAddress("https://localhost:5001");
var client = new Greeter.GreeterClient(channel);
var response = client.SayHello(new HelloRequest
{
 Name = "World"
});

To learn more about gRPC in .NET Core, read the gRPC with ASP.NET Core 3.0 article by Daniel Jimenez
Garcia.

Asynchronous communication

No matter how efficient the chosen underlying protocol is, Synchronous communication between services
has its disadvantages:

http://www.dotnetcurry.com/magazine/
https://www.nuget.org/packages/Grpc.Net.Client
https://www.nuget.org/packages/Google.Protobuf/
https://www.nuget.org/packages/Grpc.Tools/
https://www.dotnetcurry.com/aspnet-core/1514/grpc-asp-net-core-3
https://www.dotnetcurry.com/aspnet-core/1514/grpc-asp-net-core-3

12 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

• The calling service can’t complete its operation until it gets the response from the called service.
Because of network latency, IO operations are always much slower than local processing and should be
kept to a minimum.

• The calling service becomes dependent on the called services. If any of them fail, the calling service
will fail as well. This will make the whole application less reliable. If only one service stops working,
any services depending on it will stop working as well.

Although these are inherent to all distributed systems, switching to asynchronous communication between
the services can to some extent help with both these problems because the calling service doesn’t have to
wait for the response from the called service anymore.

In the Resilience section later in the article, I will introduce additional patterns for handling challenges of
communication between multiple services.

A common pattern for asynchronous communication is publisher-subscriber.

When implemented effectively, instead of directly calling another service, the publisher service sends
a message to a central event bus or message broker which is typically a separate service with the only
responsibility of delivering the messages.

Examples of such services in Azure are Service Bus, Event Grid, and Event Hubs. The other services can
subscribe to receive those messages based on their types. The event bus persist messages and guarantees
that the subscriber will be delivered the message even if it was busy or not operational at the time when
the message was published.

Figure 3: Publisher-subscriber pattern

This approach can be expanded further into event sourcing with event stream processing. In comparison
to the publisher-subscriber pattern, the events in this approach are typically more granular and persisted
permanently. This allows them to be replayed in full when a new consumer is introduced which processes
the same stream of events in a different way to bring new insights into data.

The asynchronous nature of this communication affects the overall behaviour of the application:

https://docs.microsoft.com/sl-si/azure/architecture/patterns/publisher-subscriber
https://azure.microsoft.com/en-us/services/service-bus/
https://azure.microsoft.com/en-us/services/event-grid/
https://azure.microsoft.com/en-us/services/event-hubs/
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

13

 www.dotnetcurry.com/magazine |

• The services aren’t directly dependent on each other anymore. Consequently, the calling service will
not fail if the called service isn’t working. The event will still be published, and the calling service will
successfully complete its operation. Due to event persistence, the called service will process the event
eventually. This drastically reduces the impact of a single failing service on the overall application.

• When the calling service completes its operation, the processing most likely hasn’t been completed yet.
It gets processed later when all the subscribers complete their own part of processing as well.

In a real-world application this means that a confirmation for the order could be sent out before it was
fully processed. In a worst-case scenario, this could mean that one of the items ordered will be out of stock
and the order will not be delivered in full within the original time estimate. To ensure consistency in data
stores where the operation has already been processed, a compensating transaction might be needed to
update the state according to a failure that occurred later. In more complex scenarios the Saga design
pattern can help with orchestrating the transactions for different outcomes.

• The calling service can’t get any data from other services to do its own processing. Since it’s also not
supposed to directly access data stores of other services, it must have a local copy of any data it needs.
This copy of data will have to be kept in sync with the representative data source.

Client interaction
Of course, client applications (web, mobile, etc.) also need to communicate with several of the services
that comprise the application. This communication is synchronous most of the time (clients expect direct
response to their requests). APIs exposed as RESTful services are most widely supported across different
client technologies.

API gateway

Clients that directly communicate with a multitude of services end up being very closely coupled to them.
Many implementation details must be exposed to them for such communication to work; for example, how
the load balancing of each service is handled.

To reduce this complexity, an API gateway can be introduced between the clients and the services. This
means that the client only communicates with the API gateway which then forwards these calls to the
appropriate service. Underlying changes in implementation can often be hidden from the clients. The API
gateway can effectively serve as a type of a façade for the services.

Figure 4: API gateway as a façade for services

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/gateway
https://en.wikipedia.org/wiki/Facade_pattern

14 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

In addition to simply forwarding the request to the appropriate service, the API gateway will often also be
responsible for many cross-cutting concerns, such as authentication, SSL termination, caching, logging, load
balancing, etc.

In simple scenarios, a reverse proxy such as NGINX can take the role of an API gateway. For more complex
requirements, dedicated solutions are available, such as Azure API Management.

Backend for frontend

The role of the API gateway can be pushed another step further. Instead of simply exposing the APIs of
individual services to the clients, these individual APIs can be combined into a tailored API for a specific
client, such as a mobile application.

This approach of per-client APIs is described by the backend for frontend (BFF) pattern. Multiple clients
will each have its own BFF service although the calls from all of them are in the end handled by the same
underlying services.

Figure 5: Each client has a separate backend for frontend

The scope of BFF services can vary. They might only orchestrate APIs of several underlying services, i.e., they
call multiple services synchronously, wait for their responses and then combine them in a single response
to the client request.

To improve performance, they can include a caching layer. This can be basic response caching for replaying
responses to identical request for the time the cache is valid. But it can also include more sophisticated
techniques.

A common pattern for more advanced caching of data is materialized view. Instead of caching responses or
data received from underlying services, the service has its own data store which can be used to efficiently
retrieve requested data, removing the need for calling other services. This data is a duplication of data
stored elsewhere and doesn’t represent a source of truth.

https://en.wikipedia.org/wiki/TLS_termination_proxy
https://www.nginx.com/
https://azure.microsoft.com/en-us/services/api-management/
https://docs.microsoft.com/sl-si/azure/architecture/patterns/backends-for-frontends
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response
https://docs.microsoft.com/sl-si/azure/architecture/patterns/materialized-view

15

 www.dotnetcurry.com/magazine |

Figure 6: Materialized view is updated with data from multiple sources

The important part is, how the data is updated after the initial data synchronization or migration.
This depends on the requirements and how stale the data may be. In an ideal scenario, it will automatically
be updated in response to the changes of the source data with minimum delay. This can be achieved using
the previously described publisher-subscribe pattern or event sourcing.

The materialized view can be subscribed to all events related to changes of data, that it persists. If other
services publish such events for all data, this ensures that the data in the materialized view will be up to
date most of the time.

Resilience
Cloud applications are essentially distributed applications. This changes how communication between
different parts of application is performed.

Instead of it being predominantly in-process communication, which is inherently reliable, most of the intra-
application communication is taking place over network, which is more often subject to failure.
When working on a distributed application for the first time, this aspect is often overlooked due to common
false assumptions that were listed as the fallacies of distributed computing by L. Peter Deutsch and James
Gosling in the 1990s.

To make the application more resilient to such failures and keep it working, additional measures must be
taken. There are proven patterns available that can be used.

Retry and exponential backoff

The Retry pattern’s main concern is how to respond to a failed network call.

Of course, the caller can always immediately give up and propagate the failure as a response back to its
caller. However, there is a possibility that the failure was transient, i.e., the next identical call will succeed.

http://www.dotnetcurry.com/magazine/
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://docs.microsoft.com/sl-si/azure/architecture/patterns/retry

16 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

In that case, it makes sense to retry the request before giving up. This quickly raises new questions:

• How many times should the call be retried before finally giving up?

• How long should be the delay between the retries?

There is no universal answer to these questions.

The best approach strongly depends on the specific request and the type of the error returned. The latter
should make it clear at least whether the failure was transient or not.

A special category of errors are timeouts because they don’t necessarily mean that the called service has
given up on processing. It could be that a client in the call chain has simply given up on waiting. This
means that the request might still be successfully completed. This makes it particularly dangerous to
repeat the request if it isn’t idempotent, i.e. the end state will be different if it’s executed multiple times.

In general, a common approach to handling delays between retried requests is exponential backoff, i.e., the
delay between the requests is increased exponentially. This ensures that the delay will be minimal if it was
indeed a transient failure and the second request will succeed.

On the other hand, if the failure persists for a longer time, it prevents the called service from being
overwhelmed by the increasing rate of repeated requests from multiple clients. Of course, after a certain
threshold is reached, the caller will give up retrying and report a failure itself as well.

In the .NET ecosystem, the most popular library for handling transient failures is Polly. It revolves around
creating policies for handling individual types of exceptions:

var retryPolicy = Policy
 .Handle<HttpRequestException>()
 .Retry();

This policy can then be used when executing an action that could throw such an exception:

var result = retryPolicy.Execute(() => CallService());

The policy above will simply immediately retry a single time after a matching exception (considered to be
transient) is thrown. But it’s just as easy to create a policy for multiple retries with exponential backoff:

var retryPolicy = Policy
 .Handle<HttpRequestException>()
 .WaitAndRetry(new[] {
 TimeSpan.FromSeconds(1),
 TimeSpan.FromSeconds(2),
 TimeSpan.FromSeconds(4)
 });

Instead of explicitly specifying the delays, they can also be calculated:

var retryPolicy = Policy
 .Handle<HttpRequestException>()
 .WaitAndRetry(5, retryAttempt =>
 TimeSpan.FromSeconds(Math.Pow(2, retryAttempt)));

https://en.wikipedia.org/wiki/Exponential_backoff
https://www.nuget.org/packages/Polly/

17

 www.dotnetcurry.com/magazine |

The library makes it very easy to define detailed policies matching specific requirements. It’s a great
alternative to implementing such behaviour manually.

Circuit Breaker

The Retry pattern is localized to a single request.

This means that if a service is sending multiple requests to a single service, each one of them is handled
independently of the others. However, if a request to a service is failing, it’s very likely that other requests to
the same service will be failing as well.

This is where other patterns come into play.

The Circuit Breaker pattern acts as a common proxy for all requests to a particular service. It monitors for
failing requests and based on preconfigured rules, transitions between three states:

• Closed: The called service is operating normally. All requests are passed to it.

• Open: The called service is currently failing. Any requests to it are not passed to the service and fail
immediately.

• Half-open: After a certain period in the open state, the requests to the service are again passed to it.
However, the tolerance for failure is reduced. If any requests fail, the state will switch back to open. Only
after the service seems to operate normally for some time, the circuit breaker returns into the closed
state.

Figure 7: State diagram for circuit breaker pattern

A pattern like circuit breaker can significantly reduce the number of requests sent to a service with transient
issues. This can be helpful in its recovery as it isn’t overwhelmed with incoming requests which it can’t
handle.

As for the retry pattern, the Polly library includes an easy-to-use implementation of the circuit breaker

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/sl-si/azure/architecture/patterns/circuit-breaker
https://www.nuget.org/packages/Polly/

18 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Techinical Review

Daniel Jimenez Garcia
Editorial Review

Suprotim Agarwal

Author
Damir Arh

Damir Arh has many years of experience with software development
and maintenance; from complex enterprise software projects to
modern consumer-oriented mobile applications. Although he has
worked with a wide spectrum of different languages, his favorite
language remains C#. In his drive towards better development
processes, he is a proponent of Test-driven development,Continuous
Integration, and ContinuousDeployment. He shares his knowledge by
speaking at local user groups and conferences,blogging, and writing
articles. He is an awarded Microsoft MVP for .NET since 2012.

pattern:

var circuitBreakerPolicy = Policy
 .Handle<HttpRequestException>()
 .CircuitBreaker(2, TimeSpan.FromMinutes(1));

It makes perfect sense to combine both patterns: retry the requests as needed, but also track the failures
and eventually switch the circuit breaker to open state. The library supports that as well:

var combinedPolicy = Policy
 .Wrap(retryPolicy, circuitBreakerPolicy);

Using appropriate error handling mechanisms can noticeably contribute to the overall reliability of a
distributed cloud application.

Conclusion

The article covers some of the patterns that are especially useful in distributed cloud applications.
It starts with an overview of different approaches to communication between services, both synchronous
and asynchronous. It continues with some specifics of communication between clients and the services,
introducing the API gateway and backend for frontend patterns.

The final part addresses the issue for reliability and transient failures in cloud environments. It introduces
the retry and circuit breaker patterns as useful tools for dealing with them.

Modern monitoring &
analytics

START YOUR FREE TRIAL

Aggregate metrics and events
from 400 + technologies
including .Net, Azure, and AWS

Seamlessly pivot between
correlated data for rapid
troubleshooting

Search, analyze, and explore
enriched log data

Trace requests across
distributed systems and alert
on app performance

Monitor your applications and
API endpoints via simulated
user requests

NO CREDIT CARD REQUIRED

http://www.dotnetcurry.net/2021/dnc-ddhqapperf-mag-jan2021

19

 www.dotnetcurry.com/magazine |

Modern monitoring &
analytics

START YOUR FREE TRIAL

Aggregate metrics and events
from 400 + technologies
including .Net, Azure, and AWS

Seamlessly pivot between
correlated data for rapid
troubleshooting

Search, analyze, and explore
enriched log data

Trace requests across
distributed systems and alert
on app performance

Monitor your applications and
API endpoints via simulated
user requests

NO CREDIT CARD REQUIRED

http://www.dotnetcurry.com/magazine/
http://www.dotnetcurry.net/2021/dnc-ddhqapperf-mag-jan2021

20 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Daniel Jimenez Garcia

BLAZOR

FULL-STACK
REAL TIME
APPLICATIONS USING

BLAZOR
WEBASSEMBLY,
SIGNALR AND C# 9

21

 www.dotnetcurry.com/magazine |

During the Build 2020 event, Microsoft described their journey towards One .NET. This vision can be
summarized as being able to use .NET to build any kind of application that runs anywhere.

Blazor is recognized as an important piece of that vision, enabling full-stack web applications using .NET.
After the WebAssembly hosting model for Blazor graduated from its experimental phase, teams finally have
a way to run .NET in the browser. Using Blazor, allows you to develop across your frontend and backend
applications using the same language and much of the same tooling.

In this article, we will put Blazor WebAssembly under test by building a small real time application
where users can create and participate in surveys. The application will leverage SignalR for its real time
functionality across both frontend and backend.

And given that .NET 5 and C# 9 are just released, we will use the latest ASP.NET libraries and check out
some of the new language features like record types.

Building small sample applications can be a great exercise for anyone to explore whether Blazor delivers
on its promise. Some of you will find using the same language and tooling makes you more productive
and reduces friction. Others might miss tools, libraries and developer features taken for granted in the
JavaScript ecosystem.

Hopefully this article will let you form your own idea or prompt you to try it out and explore for yourself!
You can download the article code from GitHub.

Much of this article applies to Blazor Server as well. If you are considering Blazor Server, just introduce into your
evaluation its own benefits and downsides. For more info check the official docs.

Getting started with Blazor WebAssembly
To begin with, there is some foundational work we need to go through in order to get a working solution
with a Blazor WebAssembly frontend and an ASP.NET Core backend.

The very first thing we need is to create a solution with the necessary projects. This is straightforward
enough using the standard ASP.NET templates. We will use the hosted model of Blazor WebAssembly since
that gives us both frontend and backend projects out of the box.

Run the following command to create the new solution, which we will name BlazorSurveys:

dotnet new blazorwasm --hosted --output BlazorSurveys

This will create a new folder aptly named BlazorSurveys, containing the new solution and the generated
.NET projects. I would also recommend initializing a git repository, so you can safely make changes, stage/
commit them and go back in your history if necessary:

cd BlazorSurveys
dotnet new gitignore
git init

You should have a solution with three different projects, BlazorSurveys.Client, BlazorSurveys.Server and
BlazorSurveys.Shared. Each is found in the respective Client, Server and Shared folders.

http://www.dotnetcurry.com/magazine/
https://mybuild.microsoft.com/sessions/b7e27509-c56c-42ad-9ce2-34270ecb0a38?source=speakerdetail
https://github.com/DaniJG/blazor-surveys
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-5.0#blazor-server
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-5.0#blazor-webassembly

22 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 1, generated solution

Make sure everything is working fine by building and running the solution by using either of the following
commands from the solution root folder:

manually build and run the app
dotnet run -p Server
automatically rebuild and restart the app with code changes
dotnet watch -p Server run

Figure 2, running the generated project greets you with its default home page

23

 www.dotnetcurry.com/magazine |

These commands just scratch the surface on how to run Blazor WebAssembly projects during development.
For more information, and particularly if you want to learn about how to debug the Client project, check the
official documentation.

Note we use the Server project as the startup project. Blazor WebAssembly generates a set of static files,
namely its DLLs and the necessary HTML/JS/CSS files to start the application, style it and interact with
browser APIs. Browsers need to load these static files from a web server. Since we chose the hosted model
of the WebAssembly template, the Server project has a double purpose in our solution:

• It provides the ASP.NET Core web API and SignalR hubs that the Client application interacts with.

• It also hosts the static files resulting from the Client application, including the index HTML page loaded
at the root path as in https://localhost:5001, and the HTML/JS files referenced by the index page.

For a deeper discussion on how Blazor WebAssembly works and its startup process, check out my previous
article (Blazor – Getting Started) in the DotNetCurry magazine.

Defining the application
The application we are going to build in this exercise is a web application where users can create and
participate in surveys. A survey is defined as a question, a list of options that can be chosen as the answer,
and an expiration date.

Figure 3, the home page provides a summary of all the surveys in the system

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/aspnet/core/blazor/debug?view=aspnetcore-5.0&tabs=visual-studio-code
https://www.dotnetcurry.com/dotnet/1460/blazor-getting-started
https://www.dotnetcurry.com/dotnet/1460/blazor-getting-started

24 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 4, An example of one of the current surveys

Surveys can be a very complex field, with entire companies like SurveyMonkey and Qualtrics dedicated to it.
Let’s define a simple and manageable scope for the purposes of this article.

Our aim will be to create an application where users can:

• See a list with all the surveys in the system

• Create a new survey

• See the status of a survey, including how many users selected each option

• Participate in any of the open surveys (i.e., not yet expired) by selecting or voting for one of its answers

The real time elements of the application will provide a little extra functionality for our users:

• When browsing the list of surveys, any newly created survey will immediately show up

• When viewing the status of a given survey, the number of votes for each option will be automatically
updated as other users cast their vote

This should give us enough of a real-world application feeling while allowing us to focus on the elements
we want to explore like Blazor and SignalR. Of course, you are welcome to implement any other features
you might want or be interested into, like authentication, charts, multiple questions per survey, question
types other than multiple choice, etc.

25

 www.dotnetcurry.com/magazine |

Adding the shared models
Now that we have a better idea on what we are trying to build, we can start writing some code. We will
begin by shifting our attention to the BlazorSurveys.Shared project in the Shared folder.

A shared project between the client and server projects is a fitting place for code used by both client and
server. Since we are using Blazor, we can now define model classes that will be:

• Used as input by the REST API provided by the server project

• Used as output by the same REST API

• Used as page/component models by the pages and components defined in the client project

The model classes provide a basic shared contract between the client and the server. It is one of the
benefits you get out of the box when using Blazor, having strongly typed models shared by both your client
and server code.

Note the models provide a contract in a looser way than alternatives like gRPC. We are only defining shared
models, there is no shared definition of the methods or endpoints provided by the server REST API. This
means the compiler will guarantee you only access valid properties, and these will have the expected types.
However, the compiler won’t be able to guarantee that you call the right HTTP endpoint, nor that you use
the right type for its input(s) and output!

You can actually use gRPC within your Blazor WebAssembly application, with the same general limitations that
using gRPC from the browser has. For more information on using gRPC from Blazor WebAssembly, check the
official documentation.

For a general introduction to gRPC, check my previous article (gRPC with ASP.NET Core 3.0) in the DotNetCurry
magazine.

Exploring immutable record types as models

The new C# 9 record types are a very interesting addition, which lets us easily define immutable classes.
These are like normal classes, except the compiler enforces their immutability. i.e., you cannot change the
values of their properties once an instance is created. If you want to modify them in some way, you need to
create a new instance.

Read more about record types from the C# main designer and program manager, Mads Torgersen.

While the benefits of immutability are outside the scope of this article, the new record types are a good
candidate to implement read operations in our REST API like retrieving a list of surveys or the full details of
a given survey. And since this is a Blazor application, they are also good candidates as the page models for
read-only pages such as the survey listing or survey details.

Let’s define the survey model as an immutable record type. Add a new file to the Shared project and define
the following types:

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/aspnet/core/grpc/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/grpc/browser?view=aspnetcore-5.0#call-grpc-web-from-the-browser
https://www.dotnetcurry.com/aspnet-core/1514/grpc-asp-net-core-3
https://devblogs.microsoft.com/dotnet/c-9-0-on-the-record/

26 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

public record Survey
{
 public Guid Id { get; init; } = Guid.NewGuid();
 public string Title { get; init; }
 public DateTime ExpiresAt { get; init; }
 public List<string> Options { get; init; } = new List<string>();
 public List<SurveyAnswer> Answers { get;init; } = new List<SurveyAnswer>();
}

public record SurveyAnswer
{
 public Guid Id { get; init; } = Guid.NewGuid();
 public Guid SurveyId { get; init; }
 public string Option { get; init; }
}

As you can see, defining a model using a record type is not much different from using a normal class.
However, the compiler will ensure the values are never modified after initialization.

Now let’s do the same, providing a simpler version of the survey model. We will use this model when listing
all the existing surveys, rather than using the full survey model with all of its properties.

public record SurveySummary
{
 public Guid Id { get; init; }
 public string Title { get; init; }
 public DateTime ExpiresAt { get; init; }
 public List<string> Options { get; init; }
}

Our API controller will have to convert between the Survey and the SurveySummary models. To keep things
simple, add a mapping method like the following to the Survey record:

public SurveySummary ToSummary() => new SurveySummary{
 Id = this.Id,
 Title = this.Title,
 Options = this.Options,
 ExpiresAt = this.ExpiresAt
};

Mutable models and client-side form binding

The final model we need to create will be used for the add survey page and API. Rather than defining the
model using a record type, we will use a standard class.

This will allow us to use the form bindings that Blazor provides out of the box, so we can bind specific
properties of this model to HTML form inputs. If we were to use a record type and associate one of its
properties with an HTML input field (like a textbox), we would get an Exception every time the user
modified the value.

In addition, this lets us tailor the model to the UX for adding a survey. For example, we can ask users to
define the survey duration in minutes, rather than asking them to enter a DateTime for the expiration date.

Add to the Shared project a new AddSurveyModel class like the following one:

https://docs.microsoft.com/en-us/aspnet/core/blazor/forms-validation?view=aspnetcore-5.0

27

 www.dotnetcurry.com/magazine |

public class AddSurveyModel
{
 public string Title { get; set; }
 public int? Minutes { get; set; }
 public List<OptionCreateModel> Options { get; init; } = new
List<OptionCreateModel>();

 public void RemoveOption(OptionCreateModel option) => this.Options.
Remove(option);
 public void AddOption() => this.Options.Add(new OptionCreateModel());
}

public class OptionCreateModel
{
 public string OptionValue { get; set; }
}

This should look very familiar if you have ever created a model for an ASP.NET Core web API or MVC
controller. However, you might be missing some validation attributes. Don’t worry we will come back to
forms validation later in the article.

Note the main limitation of record types prevents us from using them together with client-side form
binding. We could actually define a record type and use it in the server-side controller, while the client-side
page could use its own mutable model class bound to the form fields.

This would allow us to keep the API and server-side immutable, while getting the benefit of client-side
form binding. The downside would be having to maintain two models rather than a single one, even if the
page model could be private to the Blazor component.

For the purposes of this application, I find this would be an overkill. However, in a larger application you
might be interested in keeping the API and your controller using immutable record types. Even in the
client-side you might want to adopt a read only immutable store using the Flux pattern and a library like
Fluxor.

Creating the Server application
In this section, we will update the generated server project, so it implements both a standard REST API and
a SignalR hub for real time functionality.

If you have trouble or if you are already familiar with server side ASP.NET and SignalR, feel free to download the
source code from Github.

Adding the REST API

Now that we have our models defined, let’s implement a very simple SurveyController class that
provides the necessary REST API to manage the list of surveys and their answers. This is no different from
any other API implemented with ASP.NET Core, so I won’t spend much time on it. If you are new to it, check
existing resources like this tutorial from the official docs.

We will add a standard web API controller class, decorated with the [ApiController] attribute and
inheriting from ControllerBase. For the purposes of the article, it will contain an in-memory list of

http://www.dotnetcurry.com/magazine/
https://github.com/mrpmorris/Fluxor/blob/master/Docs/README.md
https://github.com/DaniJG/blazor-surveys
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-5.0&tabs=visual-studio

28 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

surveys rather than a connection to a database. Feel free to replace this with a persistent database, for
example using Entity Framework Core as in the tutorial linked above.

[ApiController]
[Route("api/[controller]")]
public class SurveyController: ControllerBase
{
 private static ConcurrentBag<Survey> surveys = new ConcurrentBag<Survey> {
 // feel free to initialize here some sample surveys like:
 new Survey {
 Id = Guid.Parse("b00c58c0-df00-49ac-ae85-0a135f75e01b"),
 Title = "Are you excited about .NET 5.0?",
 ExpiresAt = DateTime.Now.AddMinutes(10),
 Options = new List<string>{ "Yes", "Nope", "meh" },
 Answers = new List<SurveyAnswer>{
 new SurveyAnswer { Option = "Yes" },
 new SurveyAnswer { Option = "Yes" },
 new SurveyAnswer { Option = "Yes" },
 new SurveyAnswer { Option = "Nope" },
 new SurveyAnswer { Option = "meh" }
 }
 },
 new Survey { … omitted … },
 };
}

The controller needs to implement the following methods, each exposing its own HTTP endpoint that the
client can send a request to:

• getting a summary of all the surveys, exposed as GET /api/survey

• getting the full details of a single survey, exposed as GET /api/survey/{id}

• adding a new survey, exposed as PUT /api/survey/{id}

• answering a survey, exposed as POST /api/survey/{id}

The implementation can be as simple as:

[HttpGet()]
public IEnumerable<SurveySummary> GetSurveys()
{
 return surveys.Select(s => s.ToSummary());
}

[HttpGet("{id}")]
public ActionResult GetSurvey(Guid id)
{
 var survey = surveys.SingleOrDefault(t => t.Id == id);
 if (survey == null) return NotFound();
 return new JsonResult(survey);
}

[HttpPut()]
public async Task<Survey> AddSurvey([FromBody]AddSurveyModel addSurveyModel)
{
 var survey = new Survey{

29

 www.dotnetcurry.com/magazine |

 Title = addSurveyModel.Title,
 ExpiresAt = DateTime.Now.AddMinutes(addSurveyModel.Minutes.Value),
 Options = addSurveyModel.Options.Select(o => o.OptionValue).ToList()
 };
 surveys.Add(survey);
 return survey;
}

[HttpPost("{surveyId}/answer")]
public async Task<ActionResult> AnswerSurvey(Guid surveyId, [FromBody]SurveyAnswer
answer)
{
 var survey = surveys.SingleOrDefault(t => t.Id == surveyId);
 if (survey == null) return NotFound();
 // WARNING: this isn’t thread safe since we store answers in a List!
 survey.Answers.Add(new SurveyAnswer{
 SurveyId = surveyId,
 Option = answer.Option
 });
 return new JsonResult(survey);
}

You should now have a functional API. If you want to make sure it works as expected, you can build and
run the application, then test the API using a tool such as Postman. See the official docs for examples on
testing different methods like Get or Put.

Defining the SignalR Hub

Let’s now update the server project with a SignalR hub. As with the API controller before, since this is a
standard Hub, I won’t spend much time on it. If you want to read more, check the official docs.

Add a new Hubs folder and create a new SurveyHub.cs file inside. Inside, create a new ISurveyHub
interface. This interface defines the methods that our server-side controller will call, and the client-side will
listen to. In our case, we want to notify clients when a survey is either added or updated:

public interface ISurveyHub
{
 Task SurveyAdded(SurveySummary survey);
 Task SurveyUpdated(Survey survey);
}

Next create a SurveyHub class that inherits from the base SignalR’s Hub class. Note we don’t have to
implement the ISurveyHub interface, the interface is only necessary to provide a strongly typed interface
to our server-side code.

public class SurveyHub: Hub<ISurveyHub>
{
}

Let’s make our hub a little bit more interesting by defining two methods that clients can invoke rather than
listen to. We will use them so clients can tell the server when they are viewing a particular survey. The
server will subscribe those clients to the update events for that particular survey.

http://www.dotnetcurry.com/magazine/
https://www.postman.com/product/api-client/
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-5.0&tabs=visual-studio#test-get-with-postman
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-5.0&tabs=visual-studio#test-the-puttodoitem-method
https://docs.microsoft.com/en-us/aspnet/core/signalr/hubs?view=aspnetcore-5.0

30 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

public async Task JoinSurveyGroup(Guid surveyId)
{
 await Groups.AddToGroupAsync(Context.ConnectionId, surveyId.ToString());
}
public async Task LeaveSurveyGroup(Guid surveyId)
{
 await Groups.RemoveFromGroupAsync(Context.ConnectionId, surveyId.ToString());
}

This will let us send the survey updated events exclusively to clients that are currently viewing that survey.
When implementing the client, we just need to make sure the client-side code invokes these two hub
methods when entering/leaving the survey details page.

Let’s finish setting up the Hub by adding the necessary services and endpoint to the server application.

Update the ConfigureServices method of the Startup class to include the SignalR services:

services.AddSignalR();

. .and update the Configure method, mapping the Hub to the /surveyhub endpoint:

app.UseEndpoints(endpoints =>
{
 endpoints.MapRazorPages();
 endpoints.MapControllers();
 endpoints.MapHub<SurveyHub>("/surveyhub");
 endpoints.MapFallbackToFile("index.html");
});

Before moving on to the next section, check the official docs on how to enable response compression for
the octet-stream MIME type, which will result in smaller SignalR messages sent between your client and
server.

Emitting SignalR events from the controller

In order to emit events from the controller, we can use an instance of IHubContext<SurveyHub,
ISurveyHub>. This will let us call the events we defined in the ISurveyHub interface, which SignalR will
then propagate to any active clients.

Update the SurveyController class so an instance of the Hub context is injected via its constructor:

public class SurveyController: ControllerBase
{
 private readonly IHubContext<SurveyHub, ISurveyHub> hubContext;

 …

 public SurveyController(IHubContext<SurveyHub, ISurveyHub> surveyHub)
 {
 this.hubContext = surveyHub;
 }
}

https://docs.microsoft.com/en-us/aspnet/core/tutorials/signalr-blazor-webassembly?view=aspnetcore-5.0&tabs=visual-studio#add-services-and-an-endpoint-for-the-signalr-hub

31

 www.dotnetcurry.com/magazine |

Then modify the AddSurvey method so an event is sent to the clients. We can do so through the
hubContext.Clients.All property, which will expose the methods we defined in ISurveyHub:

public async Task<Survey> AddSurvey([FromBody]AddSurveyModel addSurveyModel)
{
 var survey = new Survey{ … omitted … };
 surveys.Add(survey);
 await this.hubContext.Clients.All.SurveyAdded(survey.ToSummary());
 return survey;
}

Now let’s also send an event whenever an answer is added to a survey. However rather than sending the
event to all the connected clients, we will only send it to the clients that are currently viewing that survey.
These are the clients who joined the SignalR group with the group name matching the survey Id:

public async Task<ActionResult> AnswerSurvey(Guid surveyId, [FromBody]SurveyAnswer
answer) {
 // … omitted …

 await this.hubContext.Clients
 .Group(surveyId.ToString())
 .SurveyUpdated(survey);
 return new JsonResult(answer);
}

With these changes, we have all the main elements of our server-side and shared code ready!

Creating the client application
It is time to switch focus to the client side and Blazor WebAssembly. For many, this will be the most
interesting section of the article!

The final source code is available in Github.

Defining a strongly typed HTTP client

At the beginning of the article, we created a few model classes and records which would be shared
between the client and server. As discussed, this would give us strongly typed models shared between the
client and server projects. However, it would be up to the developer to keep the client- side code calling the
REST API methods in sync with its implementation in the SurveyController.

We can improve the situation by creating a strongly typed HttpClient that encapsulates the REST API
methods. This way we ensure there is a single class that needs to be manually kept in sync with changes to
the interface of the REST API.

Add a new file SurveyHttpClient to the Shared project. Arguably, you could add this to the Client project as
well. I like the idea of encapsulating the API as a strongly typed class that any .NET client could use, not
just the Blazor application. Almost as if we were defining an HTTP interface!

There, implement a class that encapsulates the usage of an HttpClient calling each of the REST API
methods provided by the SurveyController:

http://www.dotnetcurry.com/magazine/
https://github.com/DaniJG/blazor-surveys
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-web-api?view=aspnetcore-5.0#typed-httpclient
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-web-api?view=aspnetcore-5.0#httpclient-and-json-helpers

32 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

public class SurveyHttpClient
{
 private readonly HttpClient http;

 public SurveyHttpClient(HttpClient http)
 {
 this.http = http;
 }

 public async Task<SurveySummary[]> GetSurveys()
 {
 return await this.http.GetFromJsonAsync<SurveySummary[]>("api/survey");
 }

 public async Task<Survey> GetSurvey(Guid surveyId)
 {
 return await this.http.GetFromJsonAsync<Survey>($"api/survey/{surveyId}");
 }

 public async Task<HttpResponseMessage> AddSurvey(AddSurveyModel survey)
 {
 return await this.http.PutAsJsonAsync<AddSurveyModel>("api/survey",
survey);
 }

 public async Task<HttpResponseMessage> AnswerSurvey(Guid surveyId, SurveyAnswer
answer)
 {
 return await this.http.PostAsJsonAsync<SurveyAnswer>($"api/survey/
{surveyId}/answer", answer);
 }
}

We have essentially created a simple library that can be used by any piece of .NET code that wants to
interact with our REST API. This includes our Blazor WebAssembly project.

As an added benefit, if you ever make a breaking change to the REST API, you won’t need to scan your
Blazor application for usages of the HttpClient which call the method you modified!

To use it in the client project, you first need to install some extension methods via the following NuGet
package:

cd Client
dotnet add package Microsoft.Extensions.Http --version 5.0.0

Then update the Main method of the Program class. We need to register the typed HttpClient as part of
the services, so we can later inject it into any razor component.

var baseAddress = new Uri(builder.HostEnvironment.BaseAddress);
builder.Services.AddScoped(sp => new HttpClient { BaseAddress = baseAddress });
builder.Services.AddHttpClient<SurveyHttpClient>(client => client.BaseAddress =
baseAddress);

You can now inject an instance of the strongly typed HttpClient into any of the Razor components of the
client project, via the standard @inject directive. For example, a given Razor component could load the
list of surveys from the server using:

33

 www.dotnetcurry.com/magazine |

@inject SurveyHttpClient SurveyHttpClient

… template omitted …

@code {
 private SurveySummary[] surveys;
 protected override async Task OnInitializedAsync()
 {
 surveys = await SurveyHttpClient.GetSurveys();
 }
}

We will use this pattern multiple times through the rest of the article.

Note you might want to consider features like error handling as part of your centralized HTTP client code.
I would suggest exploring a library like Polly, which lets you implement policies like retries or circuit
breakers.

Establishing the SignalR connection

There is one final bit of plumbing needed before we start building the client UX. We need to add the
necessary code for the client to establish a SignalR connection to the Hub we defined in the server.

The first step is adding the SignalR client library to the Client project:

dotnet add package Microsoft.AspNetCore.SignalR.Client --version 5.0.0

Note this is the general SignalR client library for any .NET application, not just Blazor applications!

Now we need to add the code to initialize and establish the SignalR connection. This is achieved using the
HubConnectionBuilder class to configure the connection, and calling its StartAsync method.

We need to be careful not to block the initialization of the Blazor app until the SignalR connection
is established. If we did so, users would see the blank loading page until the SignalR connection is
established. And they would get stuck in that loading page in case it is unable to establish the connection.
Since the SignalR connection does not provide any crucial functionality, this would be too restrictive.

With this in mind, let’s update the Main method of the Program class in order to register a singleton
HubConnection instance. We will use the HubConnectionBuilder to create the connection, but we won’t
start it yet.

builder.Services.AddSingleton<HubConnection>(sp => {
 var navigationManager = sp.GetRequiredService<NavigationManager>();
 return new HubConnectionBuilder()
 .WithUrl(navigationManager.ToAbsoluteUri("/surveyhub"))
 .WithAutomaticReconnect()
 .Build();
});

Instead, we will start the connection as part of the App.razor component. In its most basic form, this would
mean calling the StartAsync method of the connection as in:

http://www.dotnetcurry.com/magazine/
https://github.com/App-vNext/Polly

34 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

@inject HubConnection HubConnection
…
@code {
 protected override void OnInitialized()
 {
 HubConnection.StartAsync()
 }
}

This code is far too simplistic!

The first issue is obvious when you compile. You will get a warning since we are not awaiting an async
method! To a certain extent, that’s what we want - initialize in a fire and forget fashion that doesn’t block
initializing the rest of the application. However, the code can be more explicit about it and disable the
warning on that line.

More important is what happens when the initialization fails or when the connection gets lost. As it stands,
the code performs a single attempt to establish the connection.

In fact, the automatic reconnect configured as part of the HubConnectionBuilder:

• does not apply at all when initializing the connection

• will only retry a given number of times. After the last attempt, it will give up and is up to the
application developer to write some logic that restarts the connection process.

We can improve this initial attempt by wrapping the StartAsync in a method that retries the initial
connection attempt. Even better, we can handle the connection closed event and attempt the same
connection initialization:

Add a new @code section to the existing App.razor component with the following contents:

private CancellationTokenSource cts = new CancellationTokenSource();

protected override void OnInitialized()
{
 // launch the signalR connection in the background.
 #pragma warning disable CS4014
 ConnectWithRetryAsync(cts.Token);

 // Once initialized the retry logic configured in the HubConnection will
automatically attempt to reconnect
 // However, once it reaches its maximum number of attempts, it will give up and
needs to be manually started again
 // handling this event we can manually attempt to reconnect
 HubConnection.Closed += error =>
 {
 return ConnectWithRetryAsync(cts.Token);
 };
}

private async Task<bool> ConnectWithRetryAsync(CancellationToken token)
{
 // Keep trying to until we can start or the token is canceled.
 while (true)

35

 www.dotnetcurry.com/magazine |

 {
 try
 {
 await HubConnection.StartAsync(token);
 return true;
 }
 catch when (token.IsCancellationRequested)
 {
 return false;
 }
 catch
 {
 // Try again in a few seconds. This could be an incremental interval
 await Task.Delay(5000);
 }
 }
}

public async ValueTask DisposeAsync()
{
 cts.Cancel();
 cts.Dispose();
 await HubConnection.DisposeAsync();
}

For more information, see the official docs on how to handle the lost connection.

Listing all the surveys in the Index page

Let’s begin building the UX of our sample application. The first step will be replacing the existing
Index.razor component with one that lists the surveys in the application.

The component has an array of SurveySummary which is retrieved from the server using the
SurveyHttpClient. They are then rendered using a bootstrap card per survey:

@page "/"
@using BlazorSurveys.Shared
@inject SurveyHttpClient SurveyHttpClient
@inject NavigationManager NavigationManager

<h1 class="mb-4">Real-Time surveys with Blazor and SignalR</h1>

<button class="btn btn-primary mb-4" @onclick="AddSurvey"><i class="oi oi-plus" />
Add Survey</button>

@if (surveys == null)
{
 <p>Loading...</p>
} else {
 <div class="row row-cols-1 row-cols-md-2">
 @foreach (var survey in surveys.OrderBy(s => s.ExpiresAt))
 {
 <div class="col mb-4">
 <div class="card">
 <div class="card-body">
 <h5 class="card-title">@survey.Title</h5>

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/aspnet/core/signalr/dotnet-client?view=aspnetcore-5.0&tabs=visual-studio#handle-lost-connection
https://getbootstrap.com/docs/4.1/components/card/

36 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

 <button class="btn btn-link pl-0" @onclick="@(() => GoToSurvey(survey.
Id))">View survey</button>
 </div>
 </div>
 </div>
 }
 </div>
}
@code {
 private SurveySummary[] surveys;

 protected override async Task OnInitializedAsync()
 {
 surveys = await SurveyHttpClient.GetSurveys();
 }

 private void AddSurvey()
 {
 NavigationManager.NavigateTo("add-survey");
 }

 private void GoToSurvey(Guid surveyId)
 {
 NavigationManager.NavigateTo($"survey-details/{surveyId}");
 }
}

Both the “Add survey” and “View survey” buttons have an event handler for their click event. These use the
NavigationManager to navigate to pages we haven’t yet created, so they will fail if you click them! We
will add these pages in the next section.

Listening to the survey added SignalR event

We now have a page that retrieves and displays all the surveys. Let’s enhance the page so it listens to the
SurveyAdded SignalR event and automatically displays in real time any survey added by another user.

With all the plumbing we have done, this is a matter of calling the On method on the HubConnection
class. The event handler can add the survey to the component’s current list and notify Blazor of the change
via the StateHasChanged method. The only caveat is to remember cleaning our event handler when the
component is removed!

@using Microsoft.AspNetCore.SignalR.Client
@inject HubConnection HubConnection
@implements IDisposable

… omitted …

protected override async Task OnInitializedAsync()
{
 surveys = await SurveyHttpClient.GetSurveys();
 HubConnection.On<SurveySummary>("SurveyAdded", survey =>
 {
 surveys = surveys
 .Where(s => s.Title != survey.Title)
 .Append(survey)

37

 www.dotnetcurry.com/magazine |

 .ToArray();
 StateHasChanged();
 });
}

public void Dispose()
{
 HubConnection.Remove("SurveyAdded");
}

As you can see, we add an event handler for the SurveyAdded event as part of the component’s initialized
lifecycle event. This event handler is removed as part of the Dispose method when the component is
removed. The event handler receives an instance of the SurveySummary model, as we defined in the
ISurveyHub previously in the server project.

Render a live expiration time using a shared component and a
shared IExpirable interface

When we defined the survey model, we added an ExpiresAt property. It would be useful if we use this
property to display how much time remains before the survey expires. Even better, it would be great if we
could live update this information.

Let’s define a new IExpirable interface in the shared project. This interface contains an ExpiresAt
property, and we’ll use it to define three calculated properties:

• IsExpired, returning true if the survey is already expired

• ExpiresInMin, returning the number of minutes from the current time until the defined expiration
time

• ExpiresInSec, same as ExpiresInMin but in seconds

Nothing particularly remarkable, except for the fact the calculated properties are directly added to the
interface taking advantage of a feature added in C# 8.

public interface IExpirable
{
 DateTime ExpiresAt { get; }
 bool IsExpired => DateTime.Now > ExpiresAt;
 int ExpiresInMin => (int)Math.Ceiling((decimal)ExpiresInSec / 60);
 int ExpiresInSec => (int)Math.Ceiling(ExpiresAt.Subtract(DateTime.Now).
TotalMilliseconds / 1000);
}

Now that we have this interface, make sure to update both the SurveySummary and Survey models
to implement it. No other changes are needed in these record types, since they both already defined an
ExpiresAt property.

You can go back to the SurveyController for a brief change and ensure that answers are only added to
surveys that haven’t expired. In the AnswerSurvey method, add the following guard:

if (((IExpirable)survey).IsExpired) return StatusCode(400, "This survey has
expired");

http://www.dotnetcurry.com/magazine/

38 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Back to the client project, add a new SurveyExpiration.razor component. The component will receive an
instance of IExpirable as parameter and will render how long until it expires.

@using BlazorSurveys.Shared
<p @attributes="ExtraAttributes">
 @if (Expirable.IsExpired){
 This survey has already expired!
 } else if(Expirable.ExpiresInMin > 2) {
 <small class="text-muted">Expires in @Expirable.ExpiresInMin min</small>
 } else {
 <small class="text-muted">Expires in @Expirable.ExpiresInSec sec</small>
 }
</p>

@code {
 [Parameter]
 public IExpirable Expirable { get; set; }
 [Parameter(CaptureUnmatchedValues = true)]
 public Dictionary<string, object> ExtraAttributes { get; set; }
}

Note the usage of the ExtraAttributes. This allows users of this component to provide their own HTML
attributes like class, which will be added to the root <p> element of the component.

We can immediately take advantage of this component by using it from the Index.razor component. Update
its template so the component is added at the end of the current card-body element:

<div class="card-body">
 …
 <SurveyExpiration Expirable=survey class="card-text float-right" />
</div>

This is very clean and a great usage of the IExpirable interface across client and server code. The only
problem is that the displayed expiration time isn’t updated as time goes by. i.e., we won’t see the number
of minutes/seconds remaining decreasing in real time.

Let’s fix that by adding an old-fashioned Timer to the SurveyExpiration component. The Timer will fire
every second and will notify Blazor that it has to re-render the component because the state has changed.
We are effectively calling StateHasChanged every second, forcing Blazor to check the new value of the
interface calculated properties and re-render the UX.

@using System.Threading

… omitted …

 private Timer timer;

 protected override void OnInitialized()
 {
 timer = new Timer((object stateInfo) =>
 {
 StateHasChanged();
 }, null, TimeSpan.FromSeconds(1), TimeSpan.FromSeconds(1));
 }

39

 www.dotnetcurry.com/magazine |

 public async ValueTask DisposeAsync()
 {
 await timer.DisposeAsync();
 }

If you now run the application, you will see how the time remaining is live updated until the survey
eventually expires.

Figure 5, survey expiration time displayed and updated in real time

Answering a survey

To participate on a survey, we need to build a page that shows the full details of a survey. At the very least,
users need to see the available options so they can choose one of them.

Begin by adding a new SurveyDetails.razor page. This new page will receive the Id of the survey to display
as a parameter from the URL, it will load it from the server using the REST API and will display its full
details.

@page "/survey-details/{Id:guid}"
@using BlazorSurveys.Shared
@inject SurveyHttpClient SurveyHttpClient

@if (survey is null){
 <p>Loading...</p>
} else {
 <h1 class="mb-4">@survey.Title</h1>

 <p>Cast your vote by clicking in one of the options below</p>

 <ul class="list-group mb-4">

http://www.dotnetcurry.com/magazine/

40 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

 @foreach (var option in survey.Options)
 {
 <button
 class="list-group-item list-group-item-action d-flex justify-content-between
align-items-center"
 >
 @option

 @(survey.Answers.Where(a => a.Option == option).Count())

 </button>
 }

 <SurveyExpiration Expirable=survey class="text-right" />
}

@code {
 [Parameter]
 public Guid Id { get; set; }
 private Survey survey;

 protected override async Task OnInitializedAsync()
 {
 survey = await SurveyHttpClient.GetSurvey(Id);
 }
}

It is not too different from the previous Index component; except we load a single Survey from the server
rather than a list of SurveySummary. We then use a bootstrap’s list group to render each option as an
actionable item that users can click on.

Note how we also reuse the same SurveyExpiration component in order to show how long until the
survey expires.

To vote on a survey, we will need to use the AnswerSurvey method of the SurveyHttpClient. Add an
event handler to each option’s button, passing along that particular option:

@onclick="@(async () => await OnAnswer(option))"

Inside the code directive, implement the OnAnswer method as:

private async Task OnAnswer(string option)
{
 if (((IExpirable)survey).IsExpired) return;
 await SurveyHttpClient.AnswerSurvey(Id, new SurveyAnswer{
 Option = option
 });
}

That’s it, users can now click on one of the options and vote on it. Note users can keep voting as many
times as they want! Feel free to implement some functionality to ensure users can only participate once
per survey.

https://getbootstrap.com/docs/4.1/components/list-group/#links-and-buttons

41

 www.dotnetcurry.com/magazine |

Listening to the survey updated SignalR event

Now that users can answer a survey, let’s leverage our SignalR hard work to ensure users can see votes from
other users in real time.

If you remember, the server is already sending a SurveyUpdated event whenever a new answer is added.
We can then update the SurveyDetails component to subscribe to that event in a similar way the Index
component subscribed to the SurveyAdded event.

The only caveat is that the event will only be sent to clients who registered themselves within the
SignalR group for that particular survey. We then need to ensure the SurveyDetails page calls the
JoinSurveyGroup method of the Hub when initialized, as well as the LeaveSurveyGroup method when
disposed:

@using Microsoft.AspNetCore.SignalR.Client
@inject HubConnection HubConnection
@implements IAsyncDisposable

… omitted …

protected override async Task OnInitializedAsync()
{
 survey = await SurveyHttpClient.GetSurvey(Id);

 // TODO: error handling, for example when not connected to the server
 await HubConnection.InvokeAsync("JoinSurveyGroup", Id);

 HubConnection.On<Survey>("SurveyUpdated", survey =>
 {
 this.survey = survey;
 StateHasChanged();
 });
}

public async ValueTask DisposeAsync()
{
 HubConnection.Remove("SurveyUpdated");
 // TODO: error handling, for example when not connected to the server
 await HubConnection.InvokeAsync("LeaveSurveyGroup", Id);
}

Once you have these changes, open the same survey in two separate browser windows. Note how answering
in one of the windows is automatically reflected in the other.

http://www.dotnetcurry.com/magazine/

42 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 6, survey answers are propagated to clients in real time

Adding a new survey

It’s time to add the last page of our application, one where users can define new surveys.

Add a new AddSurvey.razor page, where an instance of the AddSurveyModel is edited using Blazor data
binding and its forms components. Once the form is submitted, the model will be sent to the server using
the AddSurvey method provided by the SurveyHttpClient.

@page "/add-survey"
@using BlazorSurveys.Shared
@using Microsoft.AspNetCore.Components.Forms
@inject SurveyHttpClient SurveyHttpClient
@inject NavigationManager NavigationManager

<EditForm EditContext="@editContext" OnSubmit="@OnSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <div class="form-group">
 <label for="inputTitle">Title</label>
 <InputText id="inputTitle" class="form-control" @bind-Value="survey.Title" />
 </div>

 <div class="form-group">
 <label for="inputMinutes">Minutes</label>
 <InputNumber id="inputMinutes" class="form-control" @bind-Value="survey.
Minutes" />
 </div>

https://docs.microsoft.com/en-us/aspnet/core/blazor/forms-validation?view=aspnetcore-5.0

43

 www.dotnetcurry.com/magazine |

 <label>Options</label>
 @foreach (var option in survey.Options)
 {
 <div class="input-group mb-3">
 <InputText class="form-control" @bind-Value="option.OptionValue" />
 <div class="input-group-append">
 <button class="btn btn-outline-primary" type="button" @onclick="@(() =>
survey.RemoveOption(option))">Remove</button>
 </div>
 </div>
 }
 <p>
 <button class="btn btn-primary" type="button" @onclick="@(() => survey.
AddOption())">
 <i class="oi oi-plus" /> Add Option
 </button>
 </p>

 <p>
 <button type="submit" class="btn btn-primary float-right">Submit</button>
 </p>
</EditForm>

@code {
 private AddSurveyModel survey = new AddSurveyModel();
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(survey);
 }

 private async Task OnSubmit()
 {
 if (!editContext.Validate()) return;

 var response = await SurveyHttpClient.AddSurvey(survey);
 if (response.IsSuccessStatusCode)
 {
 NavigationManager.NavigateTo("");
 }
 }
}

You should now be able to add a new survey. And with all the infrastructure we have already added, the
SurveyAdded event will be fired and received by any client currently viewing the list of surveys. Make sure
you try adding a survey with two browser windows open, where one of them stays on the Index page!

http://www.dotnetcurry.com/magazine/

44 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 7, adding a new survey

Figure 8, the new survey propagates to other clients in real time

Forms validation

Let’s finish our application by updating and customizing the validation of the AddSurveyModel. To begin
with, add some data annotation attributes like [Required] to the properties of the model class.

Once you have done so, let’s add a model rule, rather than an individual property rule. Let’s make sure
that an AddSurveyModel is only considered valid if it has at least two options. This can be achieved by
implementing the IValidatableObject interface:

public class AddSurveyModel: IValidatableObject
{
 [Required]
 [MaxLength(50)]

45

 www.dotnetcurry.com/magazine |

 public string Title { get; set; }

 …

 public IEnumerable<ValidationResult> Validate(ValidationContext
validationContext)
 {
 if (this.Options.Count < 2)
 {
 yield return new ValidationResult("A survey requires at least 2
options.");
 }
 }
}

Now re-run the application and attempt to submit the form without entering any values. The
<ValidationSummary /> component will automatically display the failed validations, including the
model level one. And the new survey won’t be submitted to the server unless it’s valid, due to the if
(!editContext.Validate()) return; guard inside the OnSubmit method.

The SurveyController automatically implements server-side validation since it is decorated with the
[ApiController] attribute. You can test this by commenting out the client-side guard and submitting an
invalid model. You will notice the server replies with a 400 Invalid response, including the details of the
failed validations.

This is great, we have both client and server-side validation completely in sync with very little effort!

Validation in nested models

However, the Blazor implementation is limited to top-level properties in the model. This means adding a
[Required] property to the OptionCreateModel has no effect in our client-side validation!

In order to validate nested models client side, we need to install another NuGet package which is still in
the experimental phase. Install it in both the Client and Shared projects:

dotnet add package Microsoft.AspNetCore.Components.DataAnnotations.Validation
--version 3.2.0-rc1.20223.4

You then have to annotate the nested model with the [ValidateComplexType] annotation. In our case,
this means adding the annotation to the Options list:

[ValidateComplexType]
public List<OptionCreateModel> Options { get; init; } = new
List<OptionCreateModel>();

Finally, replace the <DataAnnotationsValidator /> component in the Razor component with
<ObjectGraphDataAnnotationsValidator />.

For more information, see the official docs.

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/aspnet/core/blazor/forms-validation?view=aspnetcore-5.0#nested-models-collection-types-and-complex-types

46 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Customizing validation styles

Since Blazor ships with Bootstrap wired out of the box, we can customize the validation component to use
Bootstrap styling.

The very first thing you want to add is your own FieldCssClassProvider. We will use this class to
specify which class names should be added to invalid HTML input elements. To use bootstrap styles, we
want this to be the class name is-invalid when invalid.

private class BootstrapFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext, in
FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();
 return isValid ? "" : "is-invalid";
 }
}

This class is wired to the editContext as part of the OnInitialized method of the component:

editContext.SetFieldCssClassProvider(new BootstrapFieldClassProvider());

Then we can display each individual field error message right next to that field, as opposed to the
validation summary displayed at the top of the page. This can be achieved using the
editContext.GetValidationMessages method to check if there are failed validations for a specific
field, and if so display them using the expected bootstrap style:

<div class="form-group">
 <label for="inputTitle">Title</label>
 <InputText id="inputTitle" class="form-control" @bind-Value="survey.Title" />
 @if(editContext.GetValidationMessages(() => survey.Title).Any()){
 <div class="invalid-feedback">
 @editContext.GetValidationMessages(() => survey.Title).First()
 </div>
 }
</div>

The problem is that this can be very verbose once you have a few fields in the form. You could explore
component libraries or roll your own!

Finally, we can update the validation summary displayed at the top, so it uses a bootstrap alert box:

<div class="@(editContext.GetValidationMessages().Any() ? "alert alert-danger pb-0"
: "")">
 <ValidationSummary class="alert alert-danger" />
</div>

You will also want to comment out the following rule inside app.css since it overrides the default bootstrap
font color for alert boxes:

.validation-message {
 // color: red;
}

https://getbootstrap.com/docs/4.0/components/forms/#validation
https://getbootstrap.com/docs/4.0/components/alerts/

47

 www.dotnetcurry.com/magazine |

With these changes, your form validation will be styled using Bootstrap.

Figure 9, form validation using Bootstrap styling

Make sure to check the official docs on forms validation!

Conclusion

There is a lot to like in Blazor.

Enabling developers to create a web application with real time functionality using only .NET and C# can be
a huge win for many teams and developers. Not just that, you get to leverage the best .NET framework with
its latest .NET 5 release, as well as all the improvements made to the language up to C# 9.

Blazor can be a huge enabler for all of those who avoided the JavaScript ecosystem and all the nuances of
modern web development. However, if you bit the JavaScript bullet a while ago and invested in the current
web development skills and tools, its benefits might be less obvious.

I am really curious to see if Blazor can become an alternative to JavaScript with widespread appeal. In my
opinion, it is almost there. I think it needs a little bit more time to receive features I now take for granted, to
improve its performance and to grow an ecosystem of useful libraries and components.

One of the main features I miss while developing is stateful hot reload. That very short feedback loop as
I change the code, is something I find very hard to renounce. Note this has been known since the early
days of Blazor as you can see in its issue, hopefully it will make the cut for the .NET 6 planning currently
happening in the open. Hopefully this will land together with AoT compilation for better performance and

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/aspnet/core/blazor/forms-validation?view=aspnetcore-5.0
https://github.com/dotnet/aspnetcore/issues/5456
https://github.com/dotnet/aspnetcore/issues/27883
https://github.com/dotnet/aspnetcore/issues/5466

48 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Techinical Review

Damir Arh
Editorial Review

Suprotim Agarwal

Author
Daniel Jimenez Garcia

Daniel Jimenez Garcia is a passionate software developer with 10+
years of experience. He started as a Microsoft developer and learned
to love C# in general and ASP MVC in particular. In the latter half of
his career he worked on a broader set of technologies and platforms
while these days is particularly interested in .Net Core and Node.js.
He is always looking for better practices and can be seen answering
questions on Stack Overflow.

even source maps for easier debugging!

I am also aware of how much I came to rely on flux data stores like Vuex. I have used it in all the latest web
applications I created using Vue.js and I found it the key ingredient to manage complex apps with many
components. I should start exploring Blazor alternatives like Fluxor!

Finally, although the JavaScript ecosystem can be daunting to get into, once you become familiar with it
you realize there are many truly useful tools and libraries. Blazor hasn’t had the time nor the developer
adoption to get there yet. I know you can interop from Blazor to JavaScript, which means you could use
libraries from the JavaScript ecosystem. However, the Blazor magic breaks the moment you start adding
JavaScript code and libraries into your Blazor application.

I understand these are very subjective points. What for me is a major pain point might be not so much for
others. It’s also likely the level of comfort with today’s JavaScript and web development will drive much of
your position towards Blazor. The good news is that most of these issues are solvable by either Microsoft or
preferably by growing a community around Blazor.

And it’s the latter what will ultimately determine the fate of Blazor!

https://vuex.vuejs.org/
https://github.com/mrpmorris/Fluxor

49

 www.dotnetcurry.com/magazine |

http://www.dotnetcurry.com/magazine/
http://www.dotnetcurry.com/magazine/

50 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

AZURE

Darren Gillis

Diving into

Azure Data Studio
In this article, I will give a brief history of the evolution of Azure Data
Studio (ADS). I will also provide an overview of the features currently

included in ADS and a breakdown of who the target users are and why
one might want to choose ADS over SQL Server Management Studio
(SSMS). I will also examine why existing SSMS users may want to add
ADS to their arsenal of data administration and development tools.

51

 www.dotnetcurry.com/magazine |

Background
SQL Server Management Studio (SSMS) has been a mainstay of the SQL Server ecosystem as far back as
SQL Server 2005. While the strong feature set and robust capabilities have helped DBAs and developers
alike for the better part of 15 years, there remained a need for a cross-platform solution to allow additional
accessibility to a new generation of developers, database administrators, data analysts, and data architects
alike.

Enter Azure Data Studio (ADS). Launched as an open-source initiative, ADS first appeared as “SQL
Operations Studio” with pre-release public previews being available in late 2017. With the general
availability release launched in September 2018, the product was renamed to what we know today as Azure
Data Studio.

While relatively new, ADS is starting to mature into a quality addition to cross-platform tooling following
closely in the footsteps of its cousin, Visual Studio Code. ADS is a downstream fork of VS Code and
is merged regularly. For avid users of SSMS, ADS may not look like much of a competitor; however,
there are some features unique to ADS that even ardent users of SSMS will come to appreciate. If the
acknowledgment or awareness of ADS from SSMS users has been lacking, this will likely change since
starting with the latest release of SSMS (18.7.1 on October 27, 2020), ADS will be included with the SSMS
installation and installed alongside SSMS forthgoing.

The early iterations of ADS targeted SQL Server specifically. However, additional support for other
databases has steadily increased as the product continues to evolve. Currently, ADS includes support for
SQL Server, Azure SQL, Apache Spark, and Hive. Additional support for open-source databases is included
through an extension such as PostgreSQL with pending support for MySQL currently on the roadmap.

http://www.dotnetcurry.com/magazine/

52 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Target Audience

The capabilities that were included with the early preview releases of Azure Data Studio were targeted at
Database Administrators, Database Developers, Application Developers, and Data Analysts. With the release
of SQL Server 2019 and the added support for Apache Spark and the Hadoop Distributed File System, a new
architecture was born that combined these technologies into a platform known as “SQL Server Big Data
Cluster”.

It was at this point where the ADS team began to consider the potential for additional support and
capabilities to include user roles such as Data Engineers and Data Scientists. Interactive programming
is common practice within these data roles, and the usage of live coding documents such as Jupytor
Notebooks has gained widespread adoption in the data science community. As we will see later in this
article, the introduction of Jupytor Notebooks support directly in ADS, has opened the tool to a wider
audience across all the major OS platforms.

Relationship to SQL Server Management Studio
The developer DNA for Azure Data Studio comes directly from SQL Server Management Studio as the same
team at Microsoft is responsible for both products. With the release of SQL Server 2017 and the support for
SQL Server on Linux and containers, it was clear to the data team at Microsoft that a cross-platform option
for SSMS features was required to provide access to developers that are heavily using platforms such as
Linux, containers, and Mac OS. It was this cross-platform support that was the main catalyst to beginning
work on ADS as the cross-platform option.

Quick Tour and Features
Upon launching Azure Data Studio, users of Visual Studio Code will immediately notice the resemblance
and similarities.

Figure 1: ADS Welcone Screen

53

 www.dotnetcurry.com/magazine |

ADS is a downstream fork of VS Code and is merged regularly. The version number of ADS as well as VS
Code are both visible in the About > Help menu.

Figure2: ADS Help > About – Version highlights

Connections

Like any data tool, before data can be accessed, a connection to the relevant data source needs to be
established. Azure Data Studio has many options for creating and organizing collections and supports a
growing number of data sources. Current support includes SQL Server (on-prem and Azure SQL) Azure
Synapse Analytics, and PostgreSQL support is available via extension (Extensions will be discussed later in
this article).

Support for MySQL is expected to come via extension in an upcoming release although there is no
definitive date at the time of this writing.

Connections are accessed via the “Connections” option in the vertical toolbar:

Figure 3: Main Connections section

http://www.dotnetcurry.com/magazine/

54 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

In addition to the “SERVERS” view which offers the traditional method of setting up a data connection, you
will notice additional views including “AZURE” and “SQL SERVER BIG DATA CLUSTERS” that offer the ability
to connect to existing Azure accounts and SQL Big Data Clusters, respectively.
The colored groupings are fully customizable and configurable. Server groups are created using the “New
Server Group” option:

Figure 4: New Server Group option

Adding a Connection

Adding a connection is straight-forward and should be familiar to creating connections in other data tools,
such as SSMS.

Figure 5: New Connection

The connection details present options you would expect, including “Connection type” in which the options
may vary depending on any extensions that are installed. “PostgreSQL”, for instance is available with the
installation of the PostgreSQL extension. You can assign the connection to any previously created server
group by selecting from the “Server group” dropdown. The “Advanced” options include additional settings
used to configure the connection further with settings including port number, connection pooling, timeout,
encryption, etc.

55

 www.dotnetcurry.com/magazine |

Figure 6: Connection Details

Connections to Azure SQL can be configured either through the add connections dialog – particularly useful
to include relevant connections in a server group collection. Alternatively, the option to directly connect to
Azure is available and any relevant Azure SQL databases are easily accessible.

Exploring Databases

The object explorer is used to display a tree view of a server’s databases and associated objects including
tables, stored procedures, views, etc. This view should be familiar to users of SSMS or Server Explorer in
Visual Studio.

Figure 7: Exploring Database

When using the menus and options to work with the objects in the object explorer, it begins to
highlight the differences with SSMS and where avid users of SSMS may be expecting to see a myriad of
administrative options that are not yet available in ADS.

For example, right-clicking on the database reveals a context menu with limited options. Although, the
primary options that one would expect such as “New Query” and “Backup/Restore” are available, there are
many options missing when comparing to a more mature tool such as SSMS. Options such as “Detach”,
“Take Offline”, “Shrink”, etc. are not found in ADS likely due to the primary focus of ADS is for accessing
data and many of the administrative commands available in SSMS can be utilized using T-SQL commands.
It is also worth noting that the tooling void for administrative actions is currently being filled through
extensions.

Figure 8: DB context menu

http://www.dotnetcurry.com/magazine/

56 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Queries

Clicking “New Query” opens a query editing window that allows for entering SQL statements.

Figure 9: New Query Editor

Full IntelliSense and syntax highlighting are included as well as support for code snippets.

Start typing “sql” and the code snippets bundled with ADS will be listed. Custom code snippets can also be
added.

Figure 10: Code Snippets

57

 www.dotnetcurry.com/magazine |

Running the query will produce the records as rows into the results pane beneath the statements.

Figure 11: Query Results

Clicking “Explain” and re-running the query, will present the query plan.

Figure 12: Query Plan

http://www.dotnetcurry.com/magazine/

58 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Saving the query tab will create a .sql file. As we will see later in the article, saving .sql files or exporting
and saving as Notebooks, along with the built-in support for source code management, provide for better
organization, version control, and safekeeping of your SQL assets.

While you do not get all the bells and whistles that SSMS offers when creating and running SQL
statements, you do get some additional features that are unique to ADS. As an example, the group of menu
icons to the right of the results pane offer the following options that can be applied directly against the
results of the query:

Figure 13: Results Pane Options

Each of the “Save as...” options will save the results to a file of the respective format. This is helpful for
taking the results and running additional analysis outside of ADS in another analytical tool or for simply
saving a snapshot of the data at a point in time.

The “Chart” option will create an interactive chart based on the data in the results pane.

Figure 14: Chart Example

59

 www.dotnetcurry.com/magazine |

Query History

An option I have really come to appreciate is the “Query History” view (added via extension). I have often
closed a file in SSMS or closed SSMS entirely without saving the current query session and regretted
not being able to “recall” the unsaved file/query. To help with this, ADS includes a query history pane
(accessible from within the View menu [View > Query History]) that lists recently executed queries. It also
offers the ability to run the query directly from the history list or load the query into the query editor!

Figure 15: Query History View

Notebooks

Interactive programming has been exploding in recent years and the proliferation of this approach to
producing code has been a staple in the Python community with access to products such as Jupyter
Notebook developed and released by Project Jupyter. With Azure Data Studio, interactive programming
is available directly in the interface and native support for Jupyter notebooks is a unique feature to ADS.
Because this feature is not available in SSMS, the benefits that DBAs have been finding in the usage of
creating interactive SQL code and documentation, could lead them to add ADS as a core data tool.

Let’s take a quick walk through of creating and working with a Notebook.

From the main menu, File > New Notebook or Alt+Windows+N on the keyboard will open a new Notebook
editor.

Figure 16: New Notebook

http://www.dotnetcurry.com/magazine/

60 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

With the editor window open, the default Kernel is set to SQL. All your existing connections are accessible
from the “Attach to” dropdown or you have the option of creating a new connection to use directly with the
Notebook.

Figure 17: Notebook Editor

The list of available Kernels currently includes SQL, PySpark, Spark with Scala, Spark with R, Python, and
PowerShell.

Figure 18: Notebook Kernels

It is interesting to see the mix of the other well-known data analysis languages with SQL inside a data
access tool.

As mentioned earlier, one of the goals with Azure Data Studio was to support additional user roles such as
Data Engineers and Data Scientists. With the addition of the SQL Kernel, it opens even more data analysis
possibilities, as well as potential for use cases that are primarily targeted at DBAs.

There are two types of cells that can be created. One is a text cell that is used primarily for describing the
interactive coding cells that are interweaved throughout the Notebook. Clicking to add a text cell will
bring up the text editor.

Figure 19: New Cell

Figure 20: Text Cell

An early complaint from DBAs when working with the Notebooks, was the need to have to learn the
intricacies of creating formatted documentation using Markdown directly. As such, a simple but effective
rich text formatting tool was included to reduce the reliance on having to use Markdown syntax only.
However, if one prefers to hand-code text formatting using the Markdown syntax, that option is still
available as well.

Here is a simple example of how both text and code (and data!) can be combined to produce interactive
documentation more declaratively. It starts with a text cell to build the title of the Notebook, followed
by a code cell to insert the SQL statements. The generated results of the SQL statements are displayed
directly in the Notebook and the results table includes options found in the standard Query results pane for
exporting data and viewing the results in a chart.

Figure 21: Code Cell

Additional text and code cells can be created throughout the Notebook document and saving the file uses
the Jupyter Notebook.ipynb extension allowing for this Notebook to be shared with others to load directly
into Jupyter Lab or any other data analysis tool with native Jupyter Notebook support.

Saved Notebooks are available via the “NOTEBOOKS” section.

Figure 22: Save Notebook

A collection of Notebooks can be grouped together to form a “Book” with the opportunity to link directly to
Notebooks within the entire book and provide a robust collection of interactive documentation that is far
superior to maintaining a collection of SQL files and sharing them ad-hoc amongst your team.

Microsoft’s internal data team has been making extensive use of Notebooks for sharing key documentation.
They have also started to make these Books available outside of Microsoft. As an added benefit within ADS,
provided Books can be accessed and downloaded directly from within ADS via the Command Palette.

Type Ctrl+shift+p on the keyboard to bring up the Command Palette. Start typing “jupyter” to view a list of
commands that include the “Jupyter Books: SQL Server 2019 Guide” and hit “enter”.

Figure 23: Accessing Provided Books

This will load an entire Book of interactive Notebooks related to managing and supporting SQL Server
2019 Big Data Clusters. This is a great example showing the power of using interactive Notebooks for
documentation, troubleshooting, and knowledge sharing.

63

 www.dotnetcurry.com/magazine |

Figure 24: Provided Book Example

In addition to creating and utilizing Notebooks for operations, they can also be useful to create and share
for collaboration, reporting, and data workflows including experimentation, data prep, and data analysis.

Source Code Management

Visual Studio Code offers strong tooling and support for source code management including tight
integration with GitHub. Azure Data Studio adopts this feature from VS code and offers source code
management for all the created .sql, notebook (.ipynb), and database project files.

Figure 25: SCM View

http://www.dotnetcurry.com/magazine/

64 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Terminal

Another feature that users of VS Code will be familiar with and appreciate in ADS is the easy access to the
integrated terminal window. Pressing “Ctrl+`” opens a new terminal window for applying commands directly
from a command line. The default here is set to “powershell”, but any installed terminal window can be set
to default including the standard Windows Command Prompt or a Linux shell such as the Bash Shell.

Figure 26: Terminal Window

Extensions

Sharing similarities to VS Code, Azure Data Studio seeks to shine as a query editor first and promotes
access to viewing and analyzing data as a first-class experience. To keep the footprint light and the eye
on fast editing of SQL and Notebook files, additional capabilities are handled through the growing list of
extensions.

Figure 27: Extensions Panel

65

 www.dotnetcurry.com/magazine |

SQL Agent and Profiler as an example, provide extending the capabilities of ADS to bring in more
administration functionality. Other notable extensions include the “Query History” view (demonstrated
earlier), PostgreSQL for adding support for Postgres databases, Dacpac support, and SandDance for creating
enhanced visualizations from the query results pane.

The existing list of available extensions is nowhere near that of VS Code, but this should also improve over
time as more extensions are added to the marketplace.

Roadmap

While there is no definitive roadmap available, looking at the upcoming milestones and popular issues in
the GitHub project, the next few releases will likely be maintenance releases for ensuring more stability in
the product.

There is demand from the community for MySQL support which will likely be added via an extension
(similar to support for PostgreSQL). Other high-demand features include a table design editor and
increased performance for executing and viewing large datasets. I would personally like to see support for
the .NET kernel added as an option in Notebooks – this is apparently in the works, but no timeline has been
released for availability.

Which to Use – Azure Data Studio or SQL Server Management
Studio?

Obviously, for anyone working outside of a Windows OS, Azure Data Studio is the only option when
comparing the two. For ardent users of SQL Server Management Studio, the value proposition to move
to ADS may not be apparent at first glance. However, the unique ability to access the SQL kernel in a
lightweight editor and create notebooks and notebook collections easily, gives the nod to ADS when
running data analysis tasks or building SQL scripts in the form of Notebooks to share with colleagues.

According to Microsoft, “Research has shown that users spend an order of magnitude more time working
on query editing than on any other task with SQL Server Management Studio.” That’s an interesting fact
considering the power that SSMS has to offer for database management capabilities but management of
the database is always in the hands of a chosen few on most teams and access to the data is relevant for
all.

If you are a command line user, the built-in terminal with ADS is where you will spend time sending admin
commands via utilities like sqlcmd or PowerShell. If you prefer the GUI experience and lots of wizards,
SSMS is better. SSMS will also be the preferred choice for security management, live query statistics, and
provides tooling for viewing and creating database diagrams and table designers.

When speed is a factor? Then stick with SSMS. ADS is behind on rendering performance. Time to render
the data is slower in ADS when compared directly to SSMS and scrolling longer lists of data show a
noticeable lag. I am sure this will improve as the updates continue to be provided but for now, if you are
working with large tables and datasets, SSMS is your best bet.

http://www.dotnetcurry.com/magazine/

66 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Conclusion:

As a product, Azure Data Studio is still early in its development and evolution. However, as a lightweight,
cross-platform editor and data-viewer, it ticks a lot of boxes for accessing data and running analysis
through the integrated Notebooks. For SQL Server users running on Windows, it could be a hard sell
initially to buy into using ADS over SQL Server Management Studio. However, using SSMS for heavy
administration-related tasks and large datasets, and using ADS for the Notebook support and integrated
terminal will make a lot of sense for many users.

I like to work with PostgreSQL, and I have since abandoned other query and data editors, including some
commercial options, to work exclusively in Azure Data Studio. I have noticed vast improvements in stability
and feature set in the past 12 months, and I am enthusiastic about the continued potential for this product.

Techinical Review

Gouri Sohoni
Editorial Review

Suprotim Agarwal

Author
Darren Gillis

Darren Gillis is a Toronto-based software developer and technologist with
20+ years of experience primarily with Microsoft technologies. He is a big
fan of data and Microsoft Azure, having architected numerous cloud-based
software projects leveraging any of the features that Azure has to offer. He
is currently developing a SaaS based compliance platform using C#, React,
and PostgreSQL. Feel free to connect with him on LinkedIn linkedin.com/in/
darrengillis, or follow him on twitter @darrengillis

http://www.dotnetcurry.com/magazine/

68 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

F#

Yacoub Massad

F# is a.NET based
functional-first programming language. In this part
of the article series, I will continue exploring the F#
language, by using an example of the Tic Tac Toe

game.

TIC TAC

TOE

x

o

in F# Part II

o

69

 www.dotnetcurry.com/magazine |

Introduction
In the Tic Tac Toe in F# - Part 1 (Part 1 of this tutorial series), I talked about F# and explored some of its
features using the Tic Tac Toe game as an example. In this part, I am going to continue exploring some
other features. Here is the link to the source code to help you follow along:

https://github.com/ymassad/TicTacToeFSharp/blob/master/src/BoardModule.fs

In the previous tutorial, I explained the following function:

let getRow index board =
 board.Rows |> Map.tryFind index |> Option.defaultValue emptyRow

The following expression:

board.Rows |> Map.tryFind index

. .gives us the row in the board at the specified index. The tryFind function in this case returns a value of
type Row option. It will either contain a Row value, or no value in case the map does not have a value at
the specified index.

The result is then passed (using the forward pipe operator “|”) as the “second” argument to the
Option.defaultValue function. This function is used to return an alternative value (emptyRow in this
case) if no Row was found.

Here is the definition of the next function, getCell:

let getCell rowIndex columnIndex board =
 let row = getRow rowIndex board
 getCellInRow columnIndex row

http://www.dotnetcurry.com/magazine/
https://dncmagazine.blob.core.windows.net/edition48/DNCMag-Issue48.pdf#page=80
https://github.com/ymassad/TicTacToeFSharp/blob/master/src/BoardModule.fs
https://dncmagazine.blob.core.windows.net/edition48/DNCMag-Issue48.pdf#page=84

70 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

It takes the location of a cell in the board as row and column indexes including the board itself, and
returns the cell value in the board. Based on the knowledge of F# you learned so far, you should be able to
understand this function.

Editorial Note: Reading the first part of this tutorial series is highly recommended to understand the rest of the
tutorial in this series. In case you haven’t already, read it here Tic Tac Toe in F# - Part 1.

The next function is more interesting:

let allCellsInRow row =
 seq {
 yield getCellInRow One row
 yield getCellInRow Two row
 yield getCellInRow Three row
 }

As you might have guessed, the job of the allCellsInRow function is to return all cells in a row! It takes a
Row and returns a sequence of CellStatus values.

More specifically, the return type of this function is seq<CellStatus>. A sequence in F# is like
IEnumerable in C#. Actually, if you use an IL decompiler to view the allCellsInRow function, you will see
that the return type of this function is IEnumerable<CellStatus>.

Items in an F# sequence is evaluated as the sequence is consumed. For example, if you use only a single
element from the sequence returned by getCellInRow, only a single invocation of getCellInRow will be
made (instead of three).

The body of this function is a sequence expression. A sequence expression is created using the seq { }
syntax. If you ever created an iterator method in C#, then you might have guessed what the F# yield
keyword does in this function. Here, yield describes the intention to return an item. However, only when
an item is requested by the consumer, does the expression that follows the yield keyword gets evaluated.

It is worth noting here that the yield keyword in F# is not designed only for sequence expressions. A
sequence expression is just one type of a computation expression. Computation expressions allow us to do
very interesting things in F# but they are out of scope of this introductory article series.

An even more interesting function is the allCells function:

let allCells board =
 seq {
 yield! getRow One board |> allCellsInRow
 yield! getRow Two board |> allCellsInRow
 yield! getRow Three board |> allCellsInRow
 }

This function returns all the cells in a board as a sequence. For each row index, it obtains the corresponding
Row in the board and then it calls allCellsInRow to obtain the cells in that row.

All of this is done inside a sequence expression. And here, yield! is used instead of yield. If we used
yield instead of yield!, then the return type of allCells would be seq<seq<CellStatus>> (a
sequence of sequences). This is because the return type of allCellsInRow is seq<CellStatus>.

https://dncmagazine.blob.core.windows.net/edition48/DNCMag-Issue48.pdf#page=80
https://docs.microsoft.com/en-us/dotnet/csharp/iterators#enumeration-sources-with-iterator-methods
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/computation-expressions

71

 www.dotnetcurry.com/magazine |

yield! has the effect of flattening the yielded sequence into individual items. In C#, there is no
corresponding feature. An AllCells function in C# would look like this:

public static IEnumerable<CellStatus> AllCells(Board board)
{
 foreach (var item in AllCellsInRow(GetRow(Index.One, board)))
 yield return item;

 foreach (var item in AllCellsInRow(GetRow(Index.Two, board)))
 yield return item;

 foreach (var item in AllCellsInRow(GetRow(Index.Three, board)))
 yield return item;
}

Here is the next function:

let updateCellInRow row index newStatus =
 {Cells = Map.add index newStatus row.Cells}

The updateCellInRow function “updates” the status of a cell in a specific Row. Of course, when I say
updates, I mean return a new Row with the updated cell.

As explained in part 1 of this tutorial series, the return value of this function is called a record expression. In
this case, we are creating a Row value. For Cells, we are “updating” the original row cells to modify the cell
in the specified index. The Map.add function will either add a new entry to the map or will “replace” the
existing entry with a new value.

The next function updateRowInBoard updates a row in a board. It is very similar to updateCellInRow.

With the knowledge you have so far about F#, you should easily be able to understand the updateCell
function (which updates a specific cell in a board), and the emptyBoard value (which represents a brand-
new board).

Notice how updateCell uses updateCellInRow and updateRowInBoard to do its job.

Next is the isFull function:

let isFull board =
 board |> allCells |> Seq.forall (fun c -> c = HasX || c = HasO)

You give this function a board and it tells you whether the board is full, i.e., whether all cells have been
used.

Notice the forward pipe operator (|>) in this function. We start with the board and give it to the allCells
function. This will give a sequence of all cells in the board.

Then I give this sequence to the Seq.forall function. Seq.forall will test each cell in the sequence to
see if it matches a certain condition. In this case, we use a lambda expression for such a test. The lambda
returns true if the cell status is HasX or HasO. The keyword fun is used to express a lambda expression.

The Seq.forall function takes two parameters, a test function (or a predicate), and a sequence. In
the isFull function, we are passing the lambda as the first parameter of Seq.forall. For the second
parameter, we are passing the return value of allCells (using the forward pipe operator).

http://www.dotnetcurry.com/magazine/
https://dncmagazine.blob.core.windows.net/edition48/DNCMag-Issue48.pdf#page=80

It is worth noting that instead of a lambda, we can use a function value like this:

let hasXOrO c = c = HasX || c = HasO

let isFull board =
 board |> allCells |> Seq.forall hasXOrO

The first parameter of Seq.forall which is the predicate parameter is of type (‘T -> bool). The type of this
parameter is a function. So, when we call Seq.forall, we pass a function. The first time, we did so using a
lambda expression, and the second time using a function value.

It is worth noting that functions like Seq.forall are called higher-order functions. More specifically,
higher-order functions are functions that have parameters of type function, and/or that return a function.

Let’s look at the formatCell function:

let formatCell cell =
 match cell with
 | HasX -> "X"
 | HasO -> "O"
 | Empty -> "_"

The body of this function is a match expression. A match expression is very similar to the switch expression
introduced in C# 8. It allows for branching based on comparing a value (cell in the formatCell function)
with multiple patterns. In the case of the formatCell function, the function evaluates to “X” when the cell
value is HasX, “O” when it is HasO, and “_” when it is Empty. There is much more to pattern matching in F#
than this, but this is the extent I will talk about it in this article.

Next is the writeBoard function:

let writeBoard board write =
 let writeRow rowIndex =
 let row = getRow rowIndex board
 getCellInRow One row |> formatCell |> write
 write " "
 getCellInRow Two row |> formatCell |> write
 write " "
 getCellInRow Three row |> formatCell |> write
 writeRow One
 write Environment.NewLine
 writeRow Two
 write Environment.NewLine
 writeRow Three
 write Environment.NewLine

The writeBoard function takes a board and writes it. Instead of writing it directly to the console, the
writeBoard function takes another parameter called write that it will use when it wants to write a
specific string. The caller of writeBoard can pass an argument for write that writes to the console, or to
any other destination.

If you use IntelliSense to see the type of the write parameter, it looks like this:

(string -> unit)

This means that the write parameter is a function that takes a string and returns unit.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/switch-expression
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/switch-expression

73

 www.dotnetcurry.com/magazine |

Unit is basically like void in C#. However, unlike void, unit is a real type.

Unit exists in many functional programming languages to make all functions return something - even if
that something is nothing (pun intended)!

In C#, the type of the write parameter would be Action<string>. If C# had unit instead of void, then the
type of this parameter in C# would be Func<string,unit> which would remove the need to have any
Action delegates (like Action<T>) in the .NET frameworks.

Because the writeBoard function takes a parameter of type function, it is another example of a higher-
order function.

Inside writeBoard, another function called writeRow is defined. This function takes a rowIndex, fetches
the row from the board, and then writes it.

Functions defined inside functions have access to the parameters of the parent functions. They also have
access to values (functions or otherwise) defined before themselves. For example, the writeRow function
has access to (and uses) the board parameter of writeBoard.

Since version 7.0, C# has a similar feature called local functions.

After defining the writeRow function, the writeBoard function uses it to write the three rows of the
board.

Next, I am defining the allLinesIndexes value:

let allLinesIndexes =
 seq {
 //Horizontal
 yield [One, One; One, Two; One, Three]
 yield [Two, One; Two, Two; Two, Three]
 yield [Three, One; Three, Two; Three, Three]

 //Vertical
 yield [One, One; Two, One; Three, One]
 yield [One, Two; Two, Two; Three, Two]
 yield [One, Three; Two, Three; Three, Three]

 //Diagonal
 yield [One, One; Two, Two; Three, Three]
 yield [One, Three; Two, Two; Three, One]
 }

This is a value, not a function. The value here is a sequence expression. Here is the type of this value:

seq<(Index * Index) list>

This is a sequence. Each element of the sequence has the following type:

(Index * Index) list //this can also be written as list<(Index * Index)>

. .which is a list, with each element in the list having the following type:

(Index * Index)

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/local-functions

74 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

. .which is a tuple containing two elements, each of type Index.

Here, I am trying to encode the 8 possible lines that a player can fill in the game in order to win. There are
three horizontal lines, three vertical lines, and two diagonal lines.

I am encoding each line as a list of tuples (the list will contain three elements), each tuple contains the row
and column indexes of the cell. For example, the following code:

yield [One, One; One, Two; One, Three]

. .represents the following line in the board:

The yielded expression is a list containing three elements:

One, One
One, Two
One, Three

A semicolon is used to separate elements of a list. Square brackets are used to
denote the list.

Each of the three elements in the list is a tuple. The comma is used to separate the two items in each tuple.

Let’s now look at the allLineValues function:

let allLineValues board =
 let cell rowIndex columnIndex = getCell rowIndex columnIndex board
 allLinesIndexes |> Seq.map (fun line -> line |> List.map (fun (r, c) -> cell r c))

The allLineValues function takes a board and returns a seq<CellStatus list> representing the cell
values for each of the eight different lines in the board.

Inside the body of the allLinesValues function, the cell function is defined. This function returns the
status of a cell given its row and column indexes.

The allLineValues function returns the following expression:

allLinesIndexes |> Seq.map (fun line -> line |> List.map (fun (r, c) -> cell r c))

The allLinesIndexes sequence (the 8 lines indexes) is given as the second argument to the Seq.map
function. The Seq.map function is like the LINQ Select method in C#. The Seq.map function translates
each line in allLinesIndexes to a list of CellStatus representing the status of cells in that line.

The first argument of Seq.map is a mapping function that will be used to transform each item in the source
sequence. The mapping function passed to Seq.map is this function:

(fun line -> line |> List.map (fun (r, c) -> cell r c))

This is a lambda expression.

The lambda takes each line and then uses List.map to transform each cell in the line from a tuple of row and
column indexes (Index * Index) to CellStatus.List.map is like Seq.map but for lists, not sequences.

75

 www.dotnetcurry.com/magazine |

In C#, we use the same Select method for all types of collections (e.g. List<T> or T[] or
ImmutableArray<T>), but the result of the Select method is always IEnumerable<T>. In F# we can use
specialized map methods to return a collection of the same input collection type. We can always use Seq.
map for any kind of collection (like F# lists) if we want, but this will cause the resulting collection to be of
type sequence.

The next function, lineIsFullOf, looks like this:

let lineIsFullOf line status =
 line |> List.forall (fun s -> s = status)

This function takes some line as a list of CellStatus, and a specific status value, and then checks whether
all cells in the line contain that specific status. For example, we can use it to check if one of the diagonal
lines is full of Os. At least, that was my intention when I wrote this function.

However, if we use IntelliSense to see the type of this function, it looks like this:

The type of the line parameter is ‘a list. And the type of the status parameter is ‘a.

And to remind you, ‘a is a generic type parameter.
There is also an interesting “(requires equality)” at the end.

If you think about it, there is nothing in the body of the lineIsFullOf function to indicate to the compiler
that the line parameter is a list of CellStatus. There is only an indication (in the body) that line must
be a list of something. And for this “something”, there is an indication that it must support equality, for the
following expression to make sense:

(fun s -> s = status)

That is, because in this lambda expression, we are checking equality between s and status, the type of s
must support equality checking. Also, because we are checking equality between s and status, then status
must have the same type as s.

If we are to manually write the types of the parameters and the equality constraint, the function would look
like this:

let lineIsFullOf<'a when 'a :equality> (line: 'a list) (status : 'a) =
 line |> List.forall (fun s -> s = status)

Notice how we use angle brackets to specify type parameters along with any constraints ('a :equality in this
case).

F# tries hard to infer the types of parameters without us having to specify them manually.

Here is the last function in the BoardModule module:

let anyLineIsFullOf board status =
 board |> allLineValues |> Seq.exists (fun line -> lineIsFullOf line status)

http://www.dotnetcurry.com/magazine/

76 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Techinical Review

Damir Arh
Editorial Review

Suprotim Agarwal

Author
Yacoub Massad

Yacoub Massad is a software developer who works mainly with
Microsoft technologies. Currently, he works at Zeva International
where he uses C#, .NET, and other technologies to create eDiscovery
solutions. He is interested in learning and writing about software
design principles that aim at creating maintainable software. You can
view his blog posts at criticalsoftwareblog.com. Recently he started a
YouTube channel about Roslyn, the .NET compiler.

I leave this one for you to figure out.

Can you guess what this function does? What Seq.exists does? Tweet your response at @yacoubmassad or
leave a comment.

This was the last function in BoardModule. In the next part of this tutorial series, I will talk about the
GameModule.

Conclusion:

F# is a .NET based functional-first programming language. In this article series, I continued exploring the
language by using an example of the Tic Tac Toe game.

In this part, I demonstrated sequence expressions, lambda expressions, higher-order functions, match
expressions, functions defined inside functions, F# lists and tuples, the map functions, type parameters and
how the F# compiler tries hard to infer the types of parameters without us having to specify them.

http://criticalsoftwareblog.com
https://www.youtube.com/channel/UCKUnsjTO9KRlNzJoLv3KmDQ/
http://www.dotnetcurry.net/s/dncmag-prod-may17

77

 www.dotnetcurry.com/magazine |

http://www.dotnetcurry.com/magazine/
http://www.dotnetcurry.net/s/dncmag-prod-may17

78 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

MACHINE
LEARNING?

What is

Benjamin Jakobus

MACHINE LEARNING

“People worry that computers
will get too smart and take over
the world, but the real problem is
that they're too stupid and they've
already taken over the world.”

Pedro Domingos

79

 www.dotnetcurry.com/magazine |

In a previous article of our Machine Learning for Everybody series, we gained a general overview of
Artificial Intelligence (AI).

We saw that AI is concerned with solving difficult problems in dynamic environments and by examining
some real-world problems, we attempt to understand that intelligent systems use very specific techniques
to solve very domain-specific problems.

In this article, we are now ready to look at one of these techniques in detail: Machine Learning.

What is Machine Learning?

If there is only one message that you take away from this entire series on Machine Learning, then let it be
the following: machine learning is glorified statistics.

That is, machine learning looks to solve problems by identifying patterns in historical data.

Having internalized these patterns, the software can then classify new, unseen data. The patterns are
identified using statistics and internalized (i.e. “learned”). Therefore, any problem that lends itself well to
statistical analysis, lends itself to machine learning.

It is important to remember however that not all types of problems lend themselves well to pattern
recognition. Furthermore, using pattern recognition to build up knowledge and construct a model of the
world is only a very specific type of learning. There are many other forms of learning. Forms at which
humans excel at, and that we do not yet fully understand. Nevertheless, using statistical analysis, we can
build programs that learn and improve over time, without requiring manual intervention.

http://www.dotnetcurry.com/magazine/
https://dncmagazine.blob.core.windows.net/edition48/DNCMag-Issue48.pdf#page=88
https://www.dotnetcurry.com/machinelearning-ai/machine-learning-tutorial

80 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Usually, an initial set of examples (called a “training dataset”) is used to "infuse" the software with
knowledge about a very specific domain. As the software is being used, any unseen data that the software
classifies is automatically added back into the training dataset. Depending on the type of problem being
solved, users sometimes provide feedback as to the accuracy of the software's prediction or classification.
This feedback is then incorporated into the training cycle, resulting in software that becomes smarter and
smarter, the more that it is being used.

Just like artificial intelligence in general, machine learning is inspired and influenced by a wide range of
disciplines. The fusion of concepts from biology led to the development of neural networks (upcoming
article) and genetic algorithms; the cognitive sciences inspired case-based reasoning (upcoming article)
and advances in information theory resulted in decision trees.

At this point, these terms might sound alien. But don't worry, we will cover them in detail in the upcoming
articles. For now, just remember that machine learning draws from different concepts and builds on the
understanding of the world which other fields of study brought to light.

How does machine learning differ from other problem-solving techniques?

So far, we have discovered that machine learning is a problem-solving technique that allows computer
programs to learn patterns from data using methods borrowed from statistics. That is, the program
developed using machine learning techniques looks at lots of data and then identifies patterns. It uses
these patterns and tries to apply them to new, unseen data to determine "something" about this new data.
But this all sounds very abstract. What exactly does this mean in practice?

Let's look at a real-world use-case to answer this question: Patriot One Technologies Inc.

Patriot One Technologies Inc. is a Canadian defence company that provides covert weapons detection
systems. Using a low-power impulse radar, the system creates a signal signature (think of this as simply a
"digital representation" or “digital image”) of each person in range of the radar. Once created, these signal
signatures are compared to the signatures in the database. The signatures in the database correspond to a
wide range of signatures created of people carrying different types of concealed weapons - from knives and
guns to bombs. When a new signature matches that of a signature found in the database, the system alerts
a security guard or control centre, or sends a notification to law enforcement.

In classical programming, developers write computer code that describes the exact steps that the computer
needs to take in order to detect each type of weapon. That is, the developers would first write code for
translating the radar signals into some digital representation. For the sake of simplicity, let's assume that
this is simply an image created by translating the radar signals. They would then write a precise set of
instructions that, using the image as an input, would allow the computer to detect different image features.
For example, edges, straight lines, corners and certain textures.

81

 www.dotnetcurry.com/magazine |

Then, for each type of weapon, they would describe the steps involved in detecting them. For example, a
rifle might consist of two long, straight lines (the barrel), followed by two smaller curved lines, ending in
some lines shaped like a triangle (the stock).

Depending on the gun, the textures, positioning of edges or length of the lines may differ. The same is
repeated for every single weapon type.

One doesn't need to be a programmer to realize that this approach is very cumbersome and error-prone, if
not almost impossible. There is a huge variety of knives, guns and bombs. Their shapes, sizes and textures
differ immensely and depending on the angle of the weapon, or the person, the weapon may only be
partially visible.

Writing a precise set of steps to take into account all of the possible variations may therefore not even be
feasible! And even if it were, the developers would need to write new code every time a new weapon makes
it onto the market or every time a new possible angle, shape or size becomes available.

Using machine learning, the developers approach the implementation of such a system not by describing
a set of steps that lead to classification, but by feeding a large set of “images” into the system, and helping
the system identify the characteristics of specific threats.

That is, the developers first produce a large dataset that contains both digital signatures (or “images”) of
people carrying concealed weapons, and of people not carrying concealed weapons. They would then label
these images according to the threat presented in them (“pistol”, "rifle", "knife", "bomb" or “no threat”) before
feeding them into the system. The system would then use machine learning techniques to determine the
characteristics of both “threat” and “no threat” images, and store and model them in such a way that they
can be easily accessed. Once the radar signals create new, unseen images, the system will then check these
images to see whether they match the characteristics of a known “threat” or “no threat” image.

To do so, the software will not try to measure the length of different lines or follow a series of steps for
comparing the shape of different objects. Instead, it will simply take the image as a whole, and see to
what degree the arrangement of the data that composes the image, corresponds to the characteristics that
constitute one of the identified threats.

The advantage of this approach is many-fold.

Since the problem lends itself well to pattern recognition, this approach allows us to effectively deal with
variations in image quality and account for distortions as well as variations in angle and distance.

Secondly, previously unseen images can be fed back into the training dataset once classified, allowing the
system to "learn" and improve over time.

http://www.dotnetcurry.com/magazine/

82 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Thirdly, once new weapons reach the market, the system can be updated with minimal effort: one simply
needs to record sample signatures of people carrying these weapons and then add them to the training
dataset. The underlying code will not need to be updated or modified.

Defining machine learning

So far, we learned that machine learning is all about creating a model of the world using statistics and
pattern recognition. By giving a real-world example of its application, we developed an understanding of
how solving a problem using machine learning differs to solving a problem using traditional programming.
What we do not yet have however, is a precise definition of machine learning.

What exactly do we mean when we say that a software "learns"? How can we define this process?

Luckily, defining what it means for a program to learn is a bit easier than defining intelligence or artificial
intelligence. In his book "Machine Learning"1, Tom M. Mitchell gives the following definition:

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.”

Now that's a precise definition if there ever was one. But what exactly does this mean? In essence,
Mitchell's definition is a fancy way of saying that a program classifies as a machine learning program, if,
given some clear, predefined sets of tasks, the program gradually becomes better at performing these tasks
over time. To know whether someone or something is getting better at performing a task, we need some
way of measuring or quantifying their performance. This is what the "performance measure P" refers to
in his definition. The "experience E" simply refers to the timeframe over which the program is being used.
Stripping out the awkward letters, we can simplify his definition to read:

"A computer program performing a set of clearly defined tasks is said to learn from
experience if, given an objective performance measure, the program improves at performing
these tasks over time"

Designing a machine learning-powered program

Irrespective of what type of problem we are trying to solve using machine learning, there are several
concrete design choices that developers need to make before writing even a single line of computer code.
These design choices are closely linked to the definition of the term "machine learning" that we presented
in the previous section. That is, one must:

1. Precisely define the objective that is to be accomplished.
2. Identify how to measure the software's performance when accomplishing these tasks.
3. Determine exactly what type of knowledge is to be learned.
4. Determine how this knowledge is to be learned.

1 Publisher: McGraw-Hill Science/Engineering/Math; (March 1, 1997), ISBN: 0070428077

83

 www.dotnetcurry.com/magazine |

This merely involves defining what it is that the program is meant to accomplish, in such a way that we
can quantify (measure) it (a general description here won't suffice). In the case of the threat detection
system developed by Patriot One Technologies Inc, we must precisely define what it means to detect a
threat. Simply saying that the software "detects a threat" is not practical and will not help us with the
implementation of such a system. Instead, we must define what a threat is.

In this case, a threat is defined as a person carrying a weapon. So, the task of the threat detection system
can be stated as classifying a digital signature (i.e. "image" created by radar) using 4 labels: "no threat / no
weapon", "gun", "knife", "bomb". If the person in the image is carrying a bomb, the software should apply the
label "bomb" to it; in the case of a concealed knife, the label "knife", and so on, so forth.

Next, we must determine how we can measure how good the program is at performing its classification
task. Luckily, in this case, the performance measurement is fairly straight forward: we simply implement a
mechanism for counting the number of false positives and false negatives. That is, how many times does
the program falsely classify somebody as carrying a knife/gun/bomb whilst they aren't; and how many
times does the program classify somebody as not carrying a concealed weapon, whilst in fact they are. Over
time, the number of incorrect classifications should diminish.

Third on our list, is the task of determining what "type of knowledge" to learn. In the case of the threat
detection system, the software must be able to identify shapes and then classify them.
When defining the type of knowledge to deal with, machine learning experts define a "target function". This
is a fancy way of saying that they determine a method for accepting and specifying input data, and then
mapping this input to an output which maximizes the performance measure.

What do we mean by that?

Given a digital signature or image as an input, the target function acts as the formula for predicting
whether or not the person represented by this input image is carrying a weapon or not (and if so, predicting
the type of weapon).

Having defined the objectives, performance measure and type of knowledge to learn, one must determine
how the knowledge that is used to make predictions or classifications is to be learned or assimilated.
Experts call this the “training experience”. Tom Mitchell summarizes this notion well in his book "Machine
Learning" by using the example of learning how to play checkers:

“The type of training experience available can have a significant impact on success or failure
of the learner. One key attribute is whether the training experience provides direct or indirect
feedback regarding the choices made by the performance system. For example, in learning to
play checkers, the system might learn from direct training examples consisting of individual
checkers board states and the correct move for each. Alternatively, it might have available
only indirect information consisting of the move sequences and final outcomes of various
games played.“

Common problems in machine learning

So far, we defined machine learning, discussed how it differs to other problem-solving techniques, and
talked about how one would go about designing a machine learning-powered program. We have looked at
some real-world examples, and know that machine learning does well for problems that lend themselves
to statistical analysis.

http://www.dotnetcurry.com/magazine/

84 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

If machine learning is such a great solution, then why do many systems that claim to use it, often still
perform badly? Why don’t we yet see self-driving cars to be readily available, and why haven’t repetitive
manual tasks been all replaced by robots yet?

Well, the short answer is that aside from the real-world being a very complex place, machine learning still
faces many problems and challenges.

An example of one such challenge is one of building a machine learning program that works too well with
the training data. That is, one that fits the training data perfectly, and therefore cannot solve problems
using new or unseen data. Experts call this overfitting and can be best understood as an over-calibration
of the software. That is, the software is trained so well, that it looks for the exact pattern exhibited by
the training data, instead of allowing for noise introduced by unseen data. The concept is best illustrated
in figure below: here we see the performance of a given program that classifies some data. The y-axis
indicates the number of false classifications, whilst the x-axis the time or number of training iterations
run. We, therefore, see that, over time, the number of false classifications reduces when we use the
training data (thick line). If the program were to behave correctly, then we would also see the number
of errors reduce with time. But instead, after a certain number of training iterations, the number of false
classifications increase (red line).

How can this be?

Well, consider a walk in the woods on a rainy autumn day. Everything is wet and the ground is muddy. You
see two sets of footprints in front of you. The first of these footprints consists only of a rough outline and
is all smudged. The print isn’t very deep or well-formed and could belong to any grown adult. The second
footprint goes deep into the mud. The profile of the boot that made it is clearly visible, the imprint is deep
and the outline well-preserved. As you try to replicate the footprints, you will quickly see that the first,
smudged print is quite easy to replicate. You tread lightly, walked quickly and maybe wiggle your foot a bit
from side to side in the process.

The second footprint, however, will be very difficult to replicate. Unless you have the exact same boot, the
exact same weight and the exact same shoe size than the person that walked before you, you are unlikely
to be able to replicate this footprint.

What does any of this have to do with overfitting? Well, the precise, clearly formed footprint is the imprint
left on the system by the training data when overfitting took place. The imprint left by the training data is
perfect, and can only be matched if we knew data precisely matches the training data. Since this is rarely
the case, predictions or classifications made by the overfitted system are likely going to be incorrect.

Therefore, instead of a perfect imprint, we want the training data to generate a more vague, general record
of the pattern that it detected whilst training. If the imprint is too precise, then it will reflect only the

85

 www.dotnetcurry.com/magazine |

training data, but not the real world.

Luckily, there exist several ways of preventing overfitting. The first is to pay close attention to your training
data, and ensure that the examples that you use for training, are an adequate
representation of the "real world". Your examples should be adequately varied, to cover the possible
scenarios that the program can encounter as best as possible.

In the case of the Patriot One Technologies threat detection system, this means training the system with
examples that include as many different types of knives, guns and bombs as possible as well as without any
threats at all. Furthermore, the sample images should record these objects at different angles and locations
to capture as much noise and variation in size, distance etc as possible. By using only one size of weapon,
one angle or one type, we will ensure a perfect "imprint" of this specific scenario, whilst preventing the
system to recognize the threats when one or more of the aforementioned factors changes.

Another method of preventing overfitting, is to use statistical analysis to measure when to stop the training
process. In other words: we split our examples into two different datasets. 80% of the examples we could
use to train the system, whilst the remaining 20% we use to test how accurate the predictions are. If we
reach a certain point in time during training after which the system starts to increase the number of
incorrect predictions, we know that it is time to stop training. This notion is illustrated in the figure below.

Of course, there exist other ways, and even those described here are over-simplifications. Getting suitable
training data, and thoroughly testing and training the system is a difficult task that should not be under-
estimated. Many times, neither of the two are financially feasible or realistic. As we previously discussed,
often the right examples may exist in the real world, but are difficult to extract, collect or formalize (we
can't stress this point enough). Data might be
scattered across notes, emails, letters and different systems. Analyzing these different media, recording and
organizing the required information into thousands and thousands of labelled training examples might
simply not be possible.

The learning experience

The aforementioned issues are not the only problems encountered by machine learning experts. Many of
the challenges around developing machine learning-powered systems are more abstract and require ways
of looking at the world differently. For example, before arriving at the problem of overfitting, one common
difficulty is defining the correct training experience to use in the first place.

http://www.dotnetcurry.com/magazine/

86 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Here, there exist three general categories, and all are fundamentally different.

The first type of learning is the one we have spoken about so far. It is called "supervised learning", which
is a fancy name for just saying that your training data is labelled. We discussed the case of the threat
detection system using supervised learning techniques, as the digital signatures/images that were fed into
the system during training were labelled according to the threat which they represented.

Supervised learning has the obvious advantage of being able to produce correct and concise examples to
use as the data is labelled. The obvious disadvantage of course is the fact that somebody needs to label the
training data. In many cases, this involves people manually classifying, labelling or categorizing thousands
upon thousands of data items, such as images or rows in Excel spreadsheets. Furthermore, by using
labelling, we create a natural boundary as to the amount and type of knowledge that the system can learn.
This might not be an issue for a specific problem at hand of course. Whether it is an issue or not depends
largely on the problem.

When hearing machine learning experts talk about supervised learning, they might give exotic-sounding
definitions, such as:

“The problem of supervised learning involves learning a function from examples of its inputs
and outputs”

They might also formally define supervised learning as:

“Given a collection of examples of f, return a function h that approximates f”

Both of the above statements were taken from the book "Artificial Intelligence - A Modern Approach" by
Stuart Russell and Peter Norvig. To make sense of these statements, let's first explain what a function is.
Technically speaking, a function is something that takes an input and maps it to an output (as is illustrated
in figure 4.5 below)

Colloquially speaking, we could just call a function a "method" or a "formal way of doing something". This
allows us to re-phrase "the problem of supervised learning involves learning a function from examples of its
inputs and outputs" to: by knowing what the expected output for a given input is, supervised learning recognizes
patterns in the input data and uses these patterns to map unseen data to the desired outputs. In other words,
using labelled input data, a hypothesis about the data is formed (hence why the function is often labelled h
in technical papers or books).

87

 www.dotnetcurry.com/magazine |

The second "type" of learning is called "unsupervised learning". Geoffrey Hinton, summarized this approach
perfectly in just two sentences:

"When we’re learning to see, nobody’s telling us what the right answers are — we just look. Every so often, your
mother says “that’s a dog”, but that’s very little information. "

Unsupervised learning is much closer to how humans learn. Most of the time, we learn by either
observation or trial and error. But outside of a school, university or other teaching environments, we rarely
learn by being presented with a list of examples along with their meaning or classification. Instead, we
learn through observation. That is why we can often compare supervised learning to “book learning”, and
unsupervised learning to “the university of life”.

With supervised learning, you are essentially taking a class with a teacher (the data doing the actual teaching),
whilst with unsupervised learning, you are on your own. A surfer, for example, can learn which waves are
worth catching and which waves are too steep, too flat or not worth catching, without ever needing to
be presented with exact labels for each. Likewise, a farmer can identify what a good day or a bad day
for working on the fields is by stepping outside his house in the morning. He developed a feeling for the
weather, without ever being explicitly given a classification for it.

To put the two strategies into the perspective of our accompanying example (the threat detection system)
we can summarize the two learning methods as follows:

With supervised learning, we are given examples of digital signatures or images, along with information as
to what they represent, and we want to know what any unseen data represents. With unsupervised learning,
on the other hand, we are given examples of digital signatures, but don't know what they represent. When
running new data through the system, we simply want to categorize the data into one of 4 piles, each pile
containing similar signatures.

The third type of learning strategies is called “reinforcement learning”. This form of learning uses the
feedback produced by the environment itself as a teacher. This way of learning is not concerned with
identifying a pattern from a sample dataset but builds up knowledge by pairing up actions with positive
and negative feedback.

A robot - such as the Roomba - trying to learn the layout of an apartment is a perfect example of where
this learning strategy is employed in the real world. The robot itself is equipped with a sensor that sends
a signal to the robot's "brain" as soon as it hits something hard. Furthermore, when the robot is first placed
onto the apartment's floor, it knows nothing about its environment. No map, and no indication as to the size
and shape of the apartment or the objects in it. The robot is turned on, and simply starts driving, recording
its movements. As soon as it hits something hard, its sensors send a signal. This signal is a "feedback"
that indicates something about the environment (in this case the fact that the robot can't proceed). Upon
receiving the feedback, the robot records it in its robot brain, and then turns left, right or reverses to find a
new path. Hence, over time, building a dynamic map of its surroundings.

The choice of which learning strategy to use can be difficult (sometimes mixes strategies are used), and
primarily depends on three factors:

1. the nature of what is to be learned;
2. what type of feedback and performance measurements can be applied for learning; and
3. how the information learned can be modelled or represented.

http://www.dotnetcurry.com/magazine/

88 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Conclusion

At the beginning of this article, I wrote that “if there is only one message that you take away from this entire
book, then let it be the following: machine learning is glorified statistics”.

As we come to the end of this article, I wanted to reiterate this statement, as it goes a long way towards
understanding what machine learning really is, and what its limitations are.

Once you understand that machine learning solves problems primarily by identifying patterns in data,
then you will quickly be able to see through any false claims or fishy marketing tactics when it comes to
products who claim to use machine learning to make “smart decisions”. Furthermore, when you encounter
a product or project that claims to use machine learning, ask yourself why it claims to use it. By using
statistics and lots of data, we can build programs that learn and get better over time. Therefore, "learning"
and improving over time, should be an integral part of the given product's objective.

Aside from understanding what machine learning is, and how it differs to other problem-solving
techniques, we explained some (not all) of the common problems and challenges faced by experts building
machine-learning powered systems. These problems include choosing the right training experience, and
getting the actual training process correct. Specifically, experts must be careful not to "over-train" their
software (a process that, in technical jargon, is called "over-fitting").

Equipped with a general knowledge of about machine learning, we are now ready to examine individual
machine learning techniques in more detail. In other words, the upcoming articles in this series will
become slightly more technical, as we will discover how exactly to "learn" from data.

Technical and Editorial Review

Suprotim Agarwal

Author
Benjamin Jakobus

Benjamin Jakobus is a senior software engineer based in Rio de Janeiro. He
graduated with a BSc in Computer Science from University College Cork and
obtained an MSc in Advanced Computing from Imperial College, London. For
over 10 years he has worked on a wide range of products across Europe, the
United States and Brazil. You can connect with him on LinkedIn.

https://www.linkedin.com/in/benjaminjakobus/

89

 www.dotnetcurry.com/magazine |

http://www.dotnetcurry.com/magazine/

90 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

C#

Damir Arh

Nullable Reference
Types in

In this article, I look at the state of the
nullable reference types feature one year
after its initial release.

Best practices

91

 www.dotnetcurry.com/magazine |

In recent years, there’s been a trend of strict null checking in programming languages:

• TypeScript has the strictNullChecks option.

• In Kotlin (preferred language for Android development), all types don’t allow null values by default.

• In Swift (Apple’s language of choice), only the Optional data type allows null values.

• …

Nullable reference types bring similar functionality to C#. The feature was originally planned for C# 7 and
was finally released as part of C# 8.

Using nullable reference types
Since the introduction of generics in C# 2.0, value types can be declared nullable or non-nullable:

int nonNullable = null; // compiler error
int? nullable = null;

The int? notation is a shorthand for the Nullable<int> generic type which wraps a value type to allow
assigning a null value to it.

In C# 8, nullable reference types use the same syntax to give the option of declaring reference types as
nullable (i.e. allowing a null value) or non-nullable (not allowing a null value):

string nonNullable = null; // compiler warning
string? nullable = null;

Because of the language history, the decision to use the same syntax for value types and reference types
changes the behavior of the language for reference types. Before C# 8, all reference types were nullable.
They were however declared without a question mark:

// before C# 8
string nullableString;
// since C# 8
string nonNullableString;

To avoid such a breaking change in a new version of the language, the nullable reference types is the only
feature of C# 8 that isn’t enabled by default. An explicit opt-in is required for each project. The following
property must be added to the project file for that:

<Nullable>enable</Nullable>

In recent versions of Visual Studio 2019, the option is also available on the Build page of the Project
Properties window:

http://www.dotnetcurry.com/magazine/

92 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 1: Nullable option on the Build page of the Project Properties window

The option is only available for projects using C# 8 or a later version. Different from the previous versions
of the language, the support for C# 8 wasn’t added to older .NET runtimes. The language is only supported
with .NET Standard 2.1 and compatible runtimes: .NET Core 3.1 or newer, latest versions of Xamarin and
Mono, and potentially future versions of UWP and Unity. There is no official support for any version of the
.NET framework.

Static code analysis
There is an important difference in how null checking is implemented for value types and reference types.
While assigning a null value to a non-nullable value type causes a compiler error, doing the same with a
non-nullable reference type will only result in a warning. You can still treat it as an error using the Treat
warnings as errors compiler option.

The static analysis will report warnings at compile time when a NullReferenceException might be
thrown at run time, for example:

• When assigning a literal null value to a non-nullable variable:

string nonNullable = null

• When assigning a nullable variable to a non-nullable variable:

string? nullable = null;
string nonNullable = nullable;

When accessing members of a nullable variable:

var length = nullable.Length;

Of course, the warning won’t be reported if you check for null before doing the potentially dangerous
operation:

93

 www.dotnetcurry.com/magazine |

private int GetLength(string? nullable)
{
 if (nullable == null)
 {
 return 0;
 }

 return nullable.Length;
}

However, the static analysis is not perfect. Even if you get rid of all the warnings, there is still a possibility of
a NullReferenceException being thrown at run time:

public class Person
{
 public Person(string firstName, string lastName, string? homeCountry = null)
 {
 FirstName = firstName;
 LastName = lastName;
 HomeCountry = homeCountry;
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string? HomeCountry { get; set; }

 public void Relocate(string? country = null)
 {
 HomeCountry = country;
 }
}

var person = new Person("John", "Doe", "Unknown");
if (person.HomeCountry != null)
{
 person.Relocate(); // sets HomeCountry to null
 var countryLength = person.HomeCountry.Length; // no warning
}

Changes to objects in a different context (another method, different thread) are not detected. Although the
above example is contrived, similar situations might occur in real code as it grows more complex.

Even if not all potential run-time exceptions are detected at compile time, there’s still value in those that
are. Each one of them could be a nasty bug that’s now easy to fix.

The #nullable directive
When you enable the nullable reference types feature in a new project, fixing the warnings that appear as
you write the code won’t be a big deal most of the time.

On the other hand, if you enable the feature in an existing project with a lot of code, there is a strong
possibility that an overwhelming number of warnings will be reported immediately. Fixing all of these
might take a while.

http://www.dotnetcurry.com/magazine/

94 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

To make the transition easier, a new #nullable directive has been introduced into the language. It can be
used to enable or disable the nullable reference types feature inside a single source code file. For example,
the feature can be fully disabled in a file if you put the following at the top of it:

#nullable disable

The directive supports three commands:
• enable enables the feature.

• disable disables the feature.

• restore reverts the feature to the project level setting.

Instead of enabling or disabling the feature in full, only part of it can be affected by adding another
keyword at the end of the directive:
• warnings enables or disables the warnings emitted by static code analysis.

• annotations enables or disables support for declaring nullable or non-nullable reference types.

Hence, the following directive in a project with nullable reference types enabled will disable any warnings
in the rest of the file (from the point where it is placed onward) but leave the ability to declare nullable or
non-nullable reference types:

#nullable disable warnings

In my opinion, the #nullable directive can make it much more difficult to fully understand the behavior of
the code in a project because the same exact code can have a different meaning based on the #nullable
directives in the file:

#nullable enable annotations
string doesntAllowNulls;
#nullable disable annotations
string allowsNulls;

It’s difficult enough to switch between projects with the nullable reference feature enabled or disabled.
Dealing with code in the same project (or even the same file) exhibiting different behavior because of the
#nullable directive raises the complexity even more.

My suggestion is to avoid the #nullable directive as much as possible. While introducing nullable
reference type into an existing codebase, you might need to place the directive at the top of some files
with too many warnings. But as soon as possible you should remove the directives and fix those warnings
instead.

Nullable reference types in libraries

To fully benefit from nullable reference types, it’s important that any class libraries referenced by the
project are also annotated for nullable reference types, i.e. they specify the nullability of reference types
acting as their inputs and outputs.

Unfortunately, more than a year after the initial release of the feature that’s not a given. Even in the .NET
5 base class library, only 94% of the assemblies are fully annotated for nullable reference types. The

https://github.com/dotnet/runtime/issues/41720

95

 www.dotnetcurry.com/magazine |

plan is to cover the remaining assemblies before the release of .NET 6 in November 2021. Of course, the
percentage of third-party libraries with annotations for nullable reference types is even lower. The reason
for that is additional work needed to add hese annotations.

One aspect of this is the fact that it’s in the best interest of library maintainers for their libraries to
maintain compatibility with .NET Standard 2.0 (and consequently the .NET framework) even after
implementing this C# 8 specific feature that depends on .NET Standard 2.1.

Fortunately, there is an officially supported way to add annotations for nullable reference types to a .NET
Standard 2.0 library by manually adding the following property to the project file to enable the use of C# 8:

<LangVersion>8.0</LangVersion>

There are still some C# 8 features that won’t work in such a library (asynchronous streams, for example).
But most importantly, nullable reference types will be fully supported. Such a library will still work with
the .NET framework as if nullable reference types weren’t used in it. But any .NET Standard 2.1 compatible
projects (e.g. .NET Core 3.1. or Xamarin) will get full information about the nullability of reference types.

Let’s look at the following code snippet using the well-known Json.NET library to see how beneficial this
can be:

var player = JsonConvert.DeserializeObject<Player>(null);

The library introduced annotations for nullable reference types in version 12. With version 11, there will
be no warning for the above line of code even if nullable reference types are enabled in the consuming
project. Still, at run time the code will throw an ArgumentNullException. However, with version 12, the
same line of code will result in a warning at compile time making it easier to detect and fix the bug.
However, even in version 12, code analysis won’t detect all potential NullReferenceExceptions thrown at
run time. Let’s look at the next two lines of code, for example:

Player player = JsonConvert.DeserializeObject<Player>("null");
var username = player.Username;

In the first line, a null value will be assigned to a non-nullable reference type but there will be no compile-
time warning. Neither will there be one in the second line, although a NullReferenceException will be
thrown at run time.

The only way to get a compile-time warning would be to modify the first line of code as follows:

var player = JsonConvert.DeserializeObject<Player?>("null");
var username = player.Username;

Now, there will be a warning in the second line of code when trying to access a member of player without
first testing its value for null. The question is, will you always use a nullable type as the generic type
argument if the compiler doesn’t warn you about it?

Annotation attributes
There is a way to add such warnings, though. But not in a .NET Standard 2.0 library. .NET Standard 2.1 adds
a new generic constraint and a set of annotation attributes to describe the use of nullable reference types
in more detail.

http://www.dotnetcurry.com/magazine/
https://www.newtonsoft.com/json

96 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

We will use some of them to describe the following wrapper for the Json.NET DeserializeObject
method from above:

public static T DeserializeObject<T>(string json)
{
 return JsonConvert.DeserializeObject<T>(json);
}

First, we can add a constraint for the generic type argument T. Unfortunately, there’s no way to require it to
be a nullable reference type. So instead, we can require it to be a non-nullable reference type:

public static T DeserializeObject<T>(string json) where T: notnull
{
 return JsonConvert.DeserializeObject<T>(json);
}

While this constraint can be useful in certain scenarios, it doesn’t solve the initial problem of the missing
warning. Even worse. It prevents the consuming code from using a nullable reference type as the generic
type argument to get the compiler warning. But it does ensure that the type argument will always be non-
nullable. In combination with an appropriate annotation attribute, the final goal of having a compile time
warning can still be achieved:

[return: MaybeNull]
public static T DeserializeObject<T>(string json) where T: notnull
{
 return JsonConvert.DeserializeObject<T>(json);
}

When applied to the return value, the MaybeNull attribute specifies that the return type value will be a
nullable reference type even if the generic type argument is a non-nullable reference type. Because of that,
failing to do a null check before accessing the members of the returned value or assigning that value to a
non-nullable variable will result in a compile-time warning.

This is just one of the available annotation attributes for describing the reference type nullability in more
detail. They can be grouped in two categories:

• Describing the output values: MaybeNull and NotNull have the exact opposite meaning. Conditional
variations for both are also available: MaybeNullWhen, NotNullWhen, and NotNullIfNotNull.

• Describing the input values: AllowNull and DisallowNull.

Examples of use for each attribute are available in the official documentation.

Support in Entity Framework Core
Of all libraries with support for nullable reference types, Entity Framework Core might be the one with the
most impact on the code you write. All the specifics are well documented. I’m just going to point out the
most important parts that you need to be aware of.

In the DbContext class, the DbSet properties for individual tables should be non-nullable because the
base class constructor will ensure that they are always initialized. However, the following line of code will
result in a compile-time warning due to uninitialized non-nullable property:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/attributes/nullable-analysis
https://docs.microsoft.com/en-us/ef/core/miscellaneous/nullable-reference-types

97

 www.dotnetcurry.com/magazine |

public DbSet<Player> Players { get; set; }

To tell the compiler that the value is initialized without initializing it yourself, the null-forgiving operator !
can be used:

public DbSet<Player> Players { get; set; } = null!;

The modified line of code now initializes the property with the null value which on its own would still
cause a warning. The null-forgiving operator tells the compiler to ignore that warning.

Although the null-forgiving operator can be used anywhere to override the static code analysis findings,
it shouldn’t be abused unless you’re certain that the code analysis is mistaken, and you know better.
Otherwise you’ll just get an exception at run time instead of the compile-time warning.

In combination with Entity Framework Core, the null-forgiving operator is also useful for non-nullable
navigation properties in entity classes which are again initialized by the library code:

public Country HomeCountry { get; set; } = null!;

The regular non-nullable properties should be initialized in the only public class constructor:

public Player(int id, string username, string emailAddress)
{
 Id = id;
 Username = username;
 EmailAddress = emailAddress;
}

This is important because entity classes are also instantiated in code and that’s the only way to ensure
that all properties are initialized. For records from the database, Entity Framework Core would initialize the
properties anyway by assigning values directly to them. But it can also use the constructor for that when
present.

The final and probably most important detail to be aware of is the meaning of non-nullable reference
types for properties. Just like non-nullable value types, they result in a non-nullable database column. This
means that the Required attribute is not needed anymore. Instead, the type of the property must be either
nullable or non-nullable.

Special care must be taken when introducing nullable reference types in an existing codebase. Look at the
following property:

public Country HomeCountry { get; set; }

Before nullable reference types, it would mean a nullable database column because there’s no Required
attribute on it. After enabling the nullable reference types, the database column will become non-nullable
because the same syntax now means a non-nullable type. To keep the same database model, the type
should be changed to a nullable reference type:

public Country? HomeCountry { get; set; }

Fortunately, when generating a new migration, there will be a warning because of the column data type
change in case you forget to make this modification in code. Still, it requires you to pay enough attention

http://www.dotnetcurry.com/magazine/

98 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

and review the generated migration. But you should be doing that anyway.

Conclusion

In this article, I looked at the experience of using nullable reference types one year after the initial release.
I started with the basics, describing how the functionality works. I continued with a closer look at the
#nullable directive as a tool for incremental introduction of nullable reference types into existing code.
I explained how class libraries can provide information about nullable reference types to the consuming
code and concluded with a closer look at support for nullable reference types in Entity Framework Core.

Although using nullable reference types can introduce its own set of problems, I still think it’s beneficial
because it helps you find potential bugs and allows you to better express your intent in the code. For new
projects, I would recommend you enable the feature and do your best to write code without warnings.
It shouldn’t be too difficult, and your code will be better because of it. Enabling the feature in existing
code will be more challenging and might not be worth it, especially if you don’t plan to do much new
development.

Techinical Review

Yacoub Massad
Editorial Review

Suprotim Agarwal

Author
Damir Arh

Damir Arh has many years of experience with software development
and maintenance; from complex enterprise software projects to
modern consumer-oriented mobile applications. Although he has
worked with a wide spectrum of different languages, his favorite
language remains C#. In his drive towards better development
processes, he is a proponent of Test-driven development,Continuous
Integration, and ContinuousDeployment. He shares his knowledge by
speaking at local user groups and conferences,blogging, and writing
articles. He is an awarded Microsoft MVP for .NET since 2012.

99

 www.dotnetcurry.com/magazine |

http://www.dotnetcurry.com/magazine/
http://www.dotnetcurry.org/r/dnc-csharpbk-mag-march

100 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Gouri Sohoni

AZURE

CONTINUOUS
DEPLOYMENT FOR
SERVERLESS
APPLICATIONS
ON AZURE

Code created for every application, needs
to be kept at a shared location (source
control), where it can be built upon. This
is usually a server build with all the latest
code. Once the build is successful, the
artifact required for deployment to the
target is ready. And finally, we can deploy
it to a Cloud platform (like Azure) using
Release Pipeline.

101

 www.dotnetcurry.com/magazine |

There can be various stages involved in this process like Dev, QA, Staging and Production. In this tutorial, I
will discuss the following features for serverless applications using Azure and Azure DevOps:

1. How to create and work with Serverless Applications
2. How to use Azure DevOps as Source Control
3. How to use Azure Pipelines for CI and CD
4. How to use two Serverless apps - Function App and Logic App

Overview of Azure

Microsoft Azure (formerly called as Windows Azure) is a suite of cloud services. These services range from
compute, storage, analytics, networking, containers and so on.

Users can select a service of their choice suiting their project/business requirement. This choice can be
based on various factors like scalability, flexibility and cost. Azure also provides us a way with which we
can integrate with on-premise applications (hybrid applications). With Azure, we can start with a small
application and continue to increase its scale and complexity as and when required.

Azure provides us services in following broad categories : Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS).

The following table shows how the difference service are managed:

In case you are using an online set of features, you need to manage them including Application, Data, OS,
Virtualization, Storage etc. on your own.

In the table, I have not considered Serverless Applications. Let us first take an overview for the same.

Overview of Serverless Application

With Serverless applications, developers can focus on writing code and not have to worry about:

• Infrastructure procuring

http://www.dotnetcurry.com/magazine/

102 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

• Provisioning of resources

• Management of resources

Serverless apps allows us to write, build and deploy applications which can be scaled up or down as per
requirement.

We also have the option of a hybrid solution - some part of the application like database can be on-
premises and other parts like shopping cart can be on the cloud. Azure being a truly platform agnostic
cloud, for Function app, allows we can write code using C# (.NET platform or .NET Core), Java, Python or
PHP.

Azure Function App

Function App works as a container for storing multiple Azure Functions.

- Every function can be triggered by a specified trigger which is automatically triggered when the event
occurs.

- Every function can have input as well as output bindings.

- Third party assemblies or packages can be easily referenced

• NuGet packages can be used by adding a file named function.proj and referring to required
packages via it.

- Monitoring and managing these functions is easy.

- Stateless Functions, but if required, state can be maintained by using Durable Functions.

- 3 levels for Authorization:

• Anonymous

• Function

• Admin

- Security can be enforced using:

• RBAC (Role Based Access Control) support

• Adding Access Policy to Azure Key Vault

• CORS (Cross Origin Support) to provide access to another domain if needed.

• Using APIM (Azure API Management) to authenticate the requests and restrict access to the
functions

103

 www.dotnetcurry.com/magazine |

Function App workflow is pretty straightforward - whenever a trigger is invoked, the function gets executed.

Figure 1: Working of an Azure Function

The Triggers for an Azure Function are:

• Http

• Timer

• Cosmos DB

• Blob

• Queue

• EventHub

• ServiceBus

Creating and Using Function App

Let us find out how to write a small function. We are using Visual Studio Code, a free IDE from Microsoft.
Visual Studio Code is getting feature rich day by day with a vast set of extensions and writing code using it
is fun.

In order to see how a complete Continuous Integration (CI) and Continuous Deployment (CD) pipeline
works, I will use Azure DevOps for Source Control and Pipelines for creating the required definition. You
need an account to use Azure as well as to use Azure DevOps. You can create these by going to Azure Link
and Azure DevOps Link (select the Start Free button and not Start free with GitHub).

A free account on Azure will be valid for a month after you provide the necessary information (you need to
provide valid credit card details, but that is just to check for card validity and not to charge you). The Azure
DevOps account is always free (you do not have to provide any payment information).

Let us create a Team Project in your Azure DevOps account.

http://www.dotnetcurry.com/magazine/
https://code.visualstudio.com/
https://azure.microsoft.com/en-in/free/
https://azure.microsoft.com/en-in/services/devops/

104 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 2: Create Team Project in Azure DevOps

Writing Code for Azure Function

Now provide the option for keeping our code in source control in the Team Project we created earlier.
Unfortunately, there is no straight forward way to do it (because we are using Visual Studio Code). Make
sure that you have installed git for windows on your machine and then start Visual Studio Code.

Download VS Code. Make sure that you have added the extension for Azure and create a project. Provide
the necessary information and voila your first HTTP Trigger function code is ready. See Figure 3.

Figure 3: Create project, select language and trigger for function

https://code.visualstudio.com/download

105

 www.dotnetcurry.com/magazine |

The following code is automatically added to the function:

Figure 4: Code for function created with Visual Studio Code

If you want to run the code locally, install Azure Function Core Tools and click on F5. The code will get built
and you will get a url to view the function.

Click on Ctrl + Link to execute and view the function code in browser. Provide the parameter to view the
execution. This will help in finding out if there are any changes required in the code before we actually put
it in Azure.

Use Source Control from Azure DevOps

Let us add this code to source control. Start the terminal window and enter the command
“git init” to initialize the repo for git and then “git add”.

The status of the operation can be checked by using “git status” command.

Figure 5: Local Git Status

Let us commit the code by giving the command “git commit -m ‘<commit message>’” If you now run the git
status command again, you will get a message saying that there is nothing to commit and we are currently
on the master branch. To know about more details about git, please use the link.

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local?tabs=windows%2Ccsharp%2Cbash#v2
https://www.dotnetcurry.com/devops/1536/git-azure-devops

106 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Remember we have just added our code to local git and not yet to our Team Project to Azure DevOps
(remote). This will require you to install extension for Azure DevOps by running the following command:

az extension add --name azure-devops

Now provide commands to connect to the Azure DevOps Team Project and commit all the code to the
repository:

git config --global credential.helper wincred
git config --global user.name "Gouri Sohoni"
git config --global user.email <email>
az devops configure --defaults organization=https://dev.azure.com/<org
name>project=<Team Project Name>
git remote add origin <Clone Repo URL>
git push --set-upstream origin master

We can go to the Team Project in Azure DevOps and confirm that the repository is populated.

Once done, we need to create a pipeline which will deploy our code to Azure Function App.

Creating Azure Function App

We have already created an account on Azure Portal. Browse to https://portal.azure.com and login with the
user name used earlier. Create a new resource from Home and search for function app.

Figure 6: Create Function App in Azure

Provide information for resource group, name of function app, location, runtime stack and other details.

Figure 7: Configuration for Function App

https://portal.azure.com/

107

 www.dotnetcurry.com/magazine |

Keep all the remaining options as default and click on Review + create.

Resource Group is a container which can group related resources on Azure. Each resource can be a part of
a single resource group. Every resource in Azure is first reviewed for the configuration specified and then a
json template is created for it. In case of Azure Function, the storage account associated with the function
app, the app plan we specified with it – all of this becomes part of the same resource group.

Function App provides us with Deployment Centre for direct deployment from different sources. This
feature is also available with Web App. It is a very useful feature which will implement continuous
deployment. It comes in two flavors with Kudu and using Azure Pipelines. The build and release pipelines
will get created with Azure Pipelines.

Once the function app is created, provide deployment for it by directly selecting Deployment Centre blade
which can be seen in Figure 8.

Figure 8: Deployment Center Blade in Function App

Pipelines creation for Code Deployment

Provide the necessary information like Source Control type, name of Team Project to generate Pipelines.
Select Azure Repos , select Azure Pipelines and click on continue.

http://www.dotnetcurry.com/magazine/

108 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 9: Deployment Centre for Azure Function App

Select Azure Pipelines in the next screen and click on continue.

Figure 10: Deployment Centre for Azure Function App (cont.)

This option is available only for the Git (distributed) repository and not for TFVC (centralized).

Editorial Note: To know more about the different repos for Azure DevOps, read Migrating Code to Azure DevOps
Repos (4 Different Scenarios).

Select the organization name and also the Team Project name:

https://www.dotnetcurry.com/devops/1540/code-migration-azure-devops
https://www.dotnetcurry.com/devops/1540/code-migration-azure-devops

109

 www.dotnetcurry.com/magazine |

Figure 11: Deployment Centre for Azure Function App (cont.)

View a summary for all the configurations we selected and click on Finish.

Azure Deployment Centre makes our job quite simple as we do not have to create build and release pipelines in
Azure DevOps. If needed, we can also do it on our own by creating build and release pipelines by going to Azure
DevOps.

Ensure that the build and release has been successfully triggered. If the account you are using for Azure
Portal is different than the one for Azure DevOps, you need to create a connection. You can find more
information about it via this link.

There is a small hitch though. It keeps the function in read-only mode. There are a few ways to overcome
this problem, one involves changing the build definition to add one more task of build for .NET Core as
shown in Figure 12.

Figure 12: Build Pipeline

If we do not add this task, we will not be able to view the function. It gives following message:

http://www.dotnetcurry.com/magazine/
https://www.devcurry.com/2019/08/service-connection-from-azure-devops-to.html

110 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 13: Warning for Deployment Centre

The other way to overcome this problem is to use Azure CLI or Azure PowerShell to deploy the function.

After successfully adding the specified task to the build definition, things should work as expected and the
function gets added to the function app. This can be triggered using the url provided in Code + Test tab as
follows:

Figure 14: Trigger your Http Trigger function

You can view the script file and entry point added to the function.json file.

The other way for deployment with Deployment Centre is to use the option “App Service build service”
which in turn uses Kudu for deployment.

Azure KUDU is one of the fastest and easiest ways of deploying the web site components to the Azure website or
components for function app. It in turn uses Source Control with Git. We do not need to provide any other
configuration except to select the organization, Team Project, repo and branch.

111

 www.dotnetcurry.com/magazine |

Figure 15: Deployment Centre with Kudu

When you use the Deployment Centre or directly use Visual Studio or Visual Studio Code for deployment of
functions, we cannot view the code in Azure Portal for the function. Azure automatically adds PAT (Personal
Access Token) to take care of the deployment.

The Azure Portal also provides us with a simple IDE to create a function with the specified trigger. I have
created another function app in the same resource group to show as a demo. You can select the Function
blade and click on Add to do the same.

For every function, a run.csx and function.json file gets added automatically. Any assembly can be
referenced using #r and another csx file can be loaded using #l (#load). We can add support to NuGet
packages by adding a file named function.proj with the required packages referenced.

Editorial Note: Here’s a quick developer reference guide if you are absolutely new to this process https://docs.
microsoft.com/en-us/azure/azure-functions/functions-reference-csharp

I have added NuGet packages to Azure Functions and have found out some key points (comparing with the
earlier version of Functions).

1. In earlier versions, the file was named as project.json and not function.proj. It still works very well
with one of our extensions we had created for Azure DevOps

2. When you add the function.proj file with required references to NuGet packages, the code gets built
automatically and another file named project.assets.json gets created based on the assemblies referenced.
If for some reason this doesn’t happen, then add the following configuration level app settings (earlier it
used to happen more seamlessly, and then people have suffered while adding reference to NuGet packages,
especially when adding reference to third party package named SixLabors)

• name: DOTNET_ADD_GLOBAL_TOOLS_TO_PATH Value: false

• name: DOTNET_SKIP_FIRST_TIME_EXPERIENCE Value: true

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-csharp

112 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

A small example of function.proj file is as shown here (for using Azure blob storage)

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Azure.Core" Version="1.3.0" />
 <PackageReference Include="Azure.Storage.Common" Version="12.4.3" />
 <PackageReference Include="Azure.Storage.Blobs" Version="12.4.4" />
 </ItemGroup>
</Project>

Azure Functions - Best practices

Now that we have almost come to the end of this tutorial, let’s quickly see some best practices for creating
Azure Functions.

• Avoid long running functions

• Write Stateless function

• Use durable functions to manage state if required to keep state

• Write defensive code

o Take care of any error encountered in earlier execution

• Use async code to avoid blocking

Now that we have seen how CI and CD can be used with Function App, let us quickly do the same for Logic
App.

Azure Logic App

Logic App and Function App are similar as far as serverless architecture is concerned. The difference is that
Logic App provides workflow, whereas Function App supports compute service.

There are a lot of connectors supported with Logic App with the option of
creating a custom connector if required. With Logic App, we can create an
application and use release pipeline to directly deploy it to Azure. For example,
I have created another repository in the same Team Project I had created in
Azure DevOps. Let’s see how to create a Logic App.

113

 www.dotnetcurry.com/magazine |

Use Visual Studio 2019 to create Logic App

I am going to use Visual Studio 2019 to create a logic app. You can add an extension for Logic App to Visual
Studio Code and use it to create a Logic App. Start Visual Studio and select the resource group template.
Make sure that you select the designer for logic app - it will ask for the subscription and details like name
of resource group etc.

I have created a small fun workflow in a blank project where if an RSS feed is received, then the feed title
and summary is sent to a queue created in storage account. The workflow looks as follows.

Figure 16: Workflow for Logic App

As I have already mentioned, every Azure resource has a json based template created (template.json).
For the parameters in the resource, parameters.json file gets created. We will use these two files for
deployment.

Now we need to send this code to source control. Follows the steps as shown earlier to commit to the
remote repo using git commands. Please provide the values for the two keys for the storage account which
can be copied from the Access Keys blade in Storage Account.

The code looks as follows:

http://www.dotnetcurry.com/magazine/
https://visualstudio.microsoft.com/downloads/

114 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

Figure 17: Template for Logic App

Deploying to Azure

Now we just need to create a release pipeline which takes the source code as artifact and also enables
the Continuous Deployment trigger for it. So, if and when you do any changes to the json file, the changed
Logic App will be deployed. We use the ARM Template deployment task to achieve this. The ARM template
task will in turn use the json files as shown in Figure 18.

Figure 18: ARM Deployment for Logic App

115

 www.dotnetcurry.com/magazine |

Trigger CD for Azure Logic App

Change some value in the json file by modifying the code in Visual Studio 2019. Commit and push the
changes directly to the remote repo. Observe how the deployment automatically starts!

Verify that the Logic App is successfully deployed by using the Azure Portal.

Summary

Azure provides us with various services for various requirements. In this tutorial, I discussed what are
serverless applications, and their uses. Function App and Logic App were used as examples to find out how
to create, use source control and how to continuously deploy services to Azure.

With these fundamentals in place, I hope you will be able to create and deploy Serverless applications with
ease!

Techinical Review

Subodh Sohoni
Editorial Review

Suprotim Agarwal

Author
Gouri Sohoni

Gouri Sohoni is a Trainer and Consultant for over two decades. She
specializes in Visual Studio - Application Lifecycle Management (ALM)
and Team Foundation Server (TFS). She is a Microsoft MVP in VS ALM,
MCSD (VS ALM) and has conducted several corporate trainings and
consulting assignments. She has also created various products that
extend the capability of Team Foundation Server.

http://www.dotnetcurry.com/magazine/

116 | DNC MAGAZINE Issue 49 (JAN-MAR 2021)

http://www.dotnetcurry.com/magazine/

@darrengillis

Thank you
FOR THE 49th EDITION

@yacoubmassad

@suprotimagarwal

@damirarh

@subodhsohoni

WRITE FOR US

@saffronstroke

mailto: suprotimagarwal@dotnetcurry.com

@dani_djg

@gouri_sohoni

benjamij

http://www.dotnetcurry.com/magazine/
mailto:suprotimagarwal%40dotnetcurry.com?subject=I%20want%20to%20join%20the%20DNC%20Magazine%20team

